Switch to: Citations

Add references

You must login to add references.
  1. 21 Undecidability and Intractability in Theoretical Physics.Stephen Wolfram - 2013 - Emergence: Contemporary Readings in Philosophy and Science.
    This chapter explores some fundamental consequences of the correspondence between physical process and computations. Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be considered formally undecidable. The behavior of a physical system may always be calculated by simulating explicitly each step in its evolution. Much of theoretical physics has, however, been concerned with devising shorter methods of calculation (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
    Download  
     
    Export citation  
     
    Bookmark   712 citations  
  • An Abstract Model For Parallel Computations: Gandy’s Thesis.Wilfried Sieg & John Byrnes - 1999 - The Monist 82 (1):150-164.
    Wilfried Sieg and John Byrnes. AnModel for Parallel Computation: Gandy's Thesis.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Laplace's demon consults an oracle: The computational complexity of prediction.Itamar Pitowsky - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):161-180.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Computers and Intractability. A Guide to the Theory of NP-Completeness.Michael R. Garey & David S. Johnson - 1983 - Journal of Symbolic Logic 48 (2):498-500.
    Download  
     
    Export citation  
     
    Bookmark   224 citations  
  • Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes.John Earman & John D. Norton - 1993 - Philosophy of Science 60 (1):22-42.
    The standard theory of computation excludes computations whose completion requires an infinite number of steps. Malament-Hogarth spacetimes admit observers whose pasts contain entire future-directed, timelike half-curves of infinite proper length. We investigate the physical properties of these spacetimes and ask whether they and other spacetimes allow the observer to know the outcome of a computation with infinitely many steps.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • An Abstract Model For Parallel Computations.John Byrnes - 1999 - The Monist 82 (1):150-164.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Church-Turing Thesis.B. Jack Copeland - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    There are various equivalent formulations of the Church-Turing thesis. A common one is that every effective computation can be carried out by a Turing machine. The Church-Turing thesis is often misunderstood, particularly in recent writing in the philosophy of mind.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Church's Thesis and Principles for Mechanisms.Robin Gandy - 1980 - In The Kleene Symposium. North-Holland. pp. 123--148.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Non-Turing Computers and Non-Turing Computability.Mark Hogarth - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:126-138.
    A true Turing machine requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime, but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar to our world. But curiously enough-and this is (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • [Omnibus Review].Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • The Physical Church Thesis and Physical Computational Complexity.Itamar Pitowski - 1990 - Iyyun 39:81-99.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Church-Turing Thesis and Hyper-computation.O. Shagrir & I. Pitowsky - forthcoming - Minds and Machines.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-Turing Computers and Non-Turing Computability.Mark Hogarth - 1994 - Psa 1994:126--138.
    A true Turing machine (TM) requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime (the spacetime of common sense), but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar ("close") to (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations