Switch to: Citations

Add references

You must login to add references.
  1. The roles of integration in molecular systems biology.Maureen A. O’Malley & Orkun S. Soyer - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):58-68.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Making the abstract concrete: The role of norms and values in experimental modeling.Isabelle F. Peschard & Bas C. van Fraassen - 2014 - Studies in History and Philosophy of Science Part A 46:3-10.
    Experimental modeling is the construction of theoretical models hand in hand with experimental activity. As explained in Section 1, experimental modeling starts with claims about phenomena that use abstract concepts, concepts whose conditions of realization are not yet specified; and it ends with a concrete model of the phenomenon, a model that can be tested against data. This paper argues that this process from abstract concepts to concrete models involves judgments of relevance, which are irreducibly normative. In Section 2, we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Classificatory Theory in Data-intensive Science: The Case of Open Biomedical Ontologies.Sabina Leonelli - 2012 - International Studies in the Philosophy of Science 26 (1):47 - 65.
    Knowledge-making practices in biology are being strongly affected by the availability of data on an unprecedented scale, the insistence on systemic approaches and growing reliance on bioinformatics and digital infrastructures. What role does theory play within data-intensive science, and what does that tell us about scientific theories in general? To answer these questions, I focus on Open Biomedical Ontologies, digital classification tools that have become crucial to sharing results across research contexts in the biological and biomedical sciences, and argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Exploratory Experimentation and Scientific Practice: Metagenomics and the Proteorhodopsin Case.Maureen O'Malley - 2007 - History and Philosophy of the Life Sciences 29 (3):337 - 360.
    Exploratory experimentation and high-throughput molecular biology appear to have considerable affinity for each other. Included in the latter category is metagenomics, which is the DNA-based study of diverse microbial communities from a vast range of non-laboratory environments. Metagenomics has already made numerous discoveries and these have led to reinterpretations of fundamental concepts of microbial organization, evolution, and ecology. The most outstanding success story of metagenomics to date involves the discovery of a rhodopsin gene, named proteorhodopsin, in marine bacteria that were (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Pragmatic laws.Sandra D. Mitchell - 1997 - Philosophy of Science 64 (4):479.
    Beatty, Brandon, and Sober agree that biological generalizations, when contingent, do not qualify as laws. Their conclusion follows from a normative definition of law inherited from the Logical Empiricists. I suggest two additional approaches: paradigmatic and pragmatic. Only the pragmatic represents varying kinds and degrees of contingency and exposes the multiple relationships found among scientific generalizations. It emphasizes the function of laws in grounding expectation and promotes the evaluation of generalizations along continua of ontological and representational parameters. Stability of conditions (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1355 citations  
  • Reconceiving Eliminative Inference.Patrick Forber - 2011 - Philosophy of Science 78 (2):185-208.
    Eliminative reasoning seems to play an important role in the sciences, but should it be part of our best theory of science? Statistical evidence, prevalent across the sciences, causes problems for eliminative inference, supporting the view that probabilistic theories of confirmation provide a better framework for reasoning about evidence. Here I argue that deductive elimination has an important inferential role to play in science, one that is compatible with probabilistic approaches to evidence. Eliminative inferences help frame testing problems, an essential (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Junk or functional DNA? ENCODE and the function controversy.Pierre-Luc Germain, Emanuele Ratti & Federico Boem - 2014 - Biology and Philosophy 29 (6):807-831.
    In its last round of publications in September 2012, the Encyclopedia Of DNA Elements (ENCODE) assigned a biochemical function to most of the human genome, which was taken up by the media as meaning the end of ‘Junk DNA’. This provoked a heated reaction from evolutionary biologists, who among other things claimed that ENCODE adopted a wrong and much too inclusive notion of function, making its dismissal of junk DNA merely rhetorical. We argue that this criticism rests on misunderstandings concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Entering new fields: Exploratory uses of experimentation.Friedrich Steinle - 1997 - Philosophy of Science 64 (4):74.
    Starting with some illustrative examples, I develop a systematic account of a specific type of experimentation--an experimentation which is not, as in the "standard view", driven by specific theories. It is typically practiced in periods in which no theory or--even more fundamentally--no conceptual framework is readily available. I call it exploratory experimentation and I explicate its systematic guidelines. From the historical examples I argue furthermore that exploratory experimentation may have an immense, but hitherto widely neglected, epistemic significance.
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Infra-Experimentality: From Traces to Data, from Data to Patterning Facts.Hans-Jörg Rheinberger - 2011 - History of Science 49 (3):337-348.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis‐driven science in the post‐genomic era.Douglas B. Kell & Stephen G. Oliver - 2004 - Bioessays 26 (1):99-105.
    It is considered in some quarters that hypothesis‐driven methods are the only valuable, reliable or significant means of scientific advance. Data‐driven or ‘inductive’ advances in scientific knowledge are then seen as marginal, irrelevant, insecure or wrong‐headed, while the development of technology—which is not of itself ‘hypothesis‐led’ (beyond the recognition that such tools might be of value)—must be seen as equally irrelevant to the hypothetico‐deductive scientific agenda. We argue here that data‐ and technology‐driven programmes are not alternatives to hypothesis‐led studies in (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Bayesian Induction Is Eliminative Induction.James Hawthorne - 1993 - Philosophical Topics 21 (1):99-138.
    Eliminative induction is a method for finding the truth by using evidence to eliminate false competitors. It is often characterized as "induction by means of deduction"; the accumulating evidence eliminates false hypotheses by logically contradicting them, while the true hypothesis logically entails the evidence, or at least remains logically consistent with it. If enough evidence is available to eliminate all but the most implausible competitors of a hypothesis, then (and only then) will the hypothesis become highly confirmed. I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The Experimenter's Museum: GenBank, Natural History, and the Moral Economies of Biomedicine.Bruno J. Strasser - 2011 - Isis 102 (1):60-96.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Introduction: Making sense of data-driven research in the biological and biomedical sciences.S. Leonelli - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):1-3.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Nature and Context of Exploratory Experimentation: An Introduction to Three Case Studies of Exploratory Research.C. Kenneth Waters - 2007 - History and Philosophy of the Life Sciences 29 (3):275 - 284.
    My aim in this article is to introduce readers to the topic of exploratory experimentation and briefly explain how the three articles that follow, by Richard Burian, Kevin Elliott, and Maureen O'Malley, advance our understanding of the nature and significance of exploratory research. I suggest that the distinction between exploratory and theory-driven experimentation is multidimensional and that some of the dimensions are continuums. I point out that exploratory experiments are typically theory-informed even if they are not theory-driven. I also distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Too many numbers: Microarrays in clinical cancer research.Peter Keating & Alberto Cambrosio - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):37-51.
    In his highly regarded history of the rise of clinical trials in America, HarryMarks describes how their widespread adoption resulted largely fromthe efforts of ‘therapeutic reformers’ who sought to replace the individualexpertise of clinicians with the ‘science of controlled experiment’. Thetransition described by Marks resembles in many respects the transition fromthe ‘truth-to-nature’ objectivity of individual experts to a ‘mechanical’ formof objectivity portrayed by Daston and Galison. In particular,Marks details the passage from a regime of trust in expertise and experts to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On Molecular Mechanisms and Contexts of Physical Explanation.Giovanni Boniolo - 2013 - Biological Theory 7 (3):256-265.
    In this article, two issues regarding mechanisms are discussed. The first concerns the relationships between “mechanism description” and “mechanism explanation.” It is proposed that it is rather plausible to think of them as two distinct epistemic acts. The second deals with the different molecular biology explanatory contexts, and it is shown that some of them require physics and its laws.
    Download  
     
    Export citation  
     
    Bookmark   2 citations