Switch to: Citations

Add references

You must login to add references.
  1. Subsystems and independence in relativistic microscopic physics.Stephen J. Summers - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):133-141.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Entanglement and Open Systems in Algebraic Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (1):1-31.
    Entanglement has long been the subject of discussion by philosophers of quantum theory, and has recently come to play an essential role for physicists in their development of quantum information theory. In this paper we show how the formalism of algebraic quantum field theory (AQFT) provides a rigorous framework within which to analyse entanglement in the context of a fully relativistic formulation of quantum theory. What emerges from the analysis are new practical and theoretical limitations on an experimenter's ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • How local are local operations in local quantum field theory?Miklós Rédei & Giovanni Valente - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (4):346-353.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Subsystems and independence in relativistic microscopic physics.Stephen J. Summers - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):133-141.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (2 other versions)John von Neumann on mathematical and axiomatic physics.Miklós Rédei - 2005 - In Giovanni Boniolo, Paolo Budinich & Majda Trobok (eds.), The Role of Mathematics in Physical Sciences: Interdisciplinary and Philosophical Aspects. Springer. pp. 43-54.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)John von Neumann on mathematical and axiomatic physics.Miklós Rédei - 2005 - In Giovanni Boniolo, Paolo Budinich & Majda Trobok (eds.), The Role of Mathematics in Physical Sciences: Interdisciplinary and Philosophical Aspects. Springer. pp. 43-54.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • John von Neumann on quantum correlations.Miklós Rédei - 2006 - In William Demopoulos & Itamar Pitowsky (eds.), Physical Theory and its Interpretation: Essays in Honor of Jeffrey Bub. Springer. pp. 241-252.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Einstein on Locality and Separability.Don Howard - 1985 - Studies in History and Philosophy of Science Part A 16 (3):171.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Quanten‐mechanik und wirklichkeit.A. Einstein - 1948 - Dialectica 2 (3‐4):320-324.
    ZusammenfassungFasst man die Ψ‐Funktion in der Quantenmechanik als eine vollständige Beschreibung eines realen Sachverhaltes auf, so ist die Hypothese einer schwer annehm‐baren Fernwirkung impliziert. Fasst man die Ψ‐Funktion aber als eine unvollständige Beschreibung eines realen Sachverhaltes auf, so ist es schwer zu glauben, dass für eine unvollständige Beschreibung strenge Gesetze für die zeitliche Abhängigkeit gelten.‐ A. E.
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Local Primitive Causality and the Common Cause Principle in Quantum Field Theory.Miklos Redei & Stephen J. Summers - 2001 - Foundations of Physics 32 (3):335-355.
    If $\mathcal{A}$ (V) is a net of local von Neumann algebras satisfying standard axioms of algebraic relativistic quantum field theory and V 1 and V 2 are spacelike separated spacetime regions, then the system ( $\mathcal{A}$ (V 1 ), $\mathcal{A}$ (V 2 ), φ) is said to satisfy the Weak Reichenbach's Common Cause Principle iff for every pair of projections A∈ $\mathcal{A}$ (V 1 ), B∈ $\mathcal{A}$ (V 2 ) correlated in the normal state φ there exists a projection C (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations