Switch to: Citations

Add references

You must login to add references.
  1. The limits of empowerment: how to reframe the role of mHealth tools in the healthcare ecosystem.Jessica Morley & Luciano Floridi - 2020 - Science and Engineering Ethics 26 (3):1159-1183.
    This article highlights the limitations of the tendency to frame health- and wellbeing-related digital tools (mHealth technologies) as empowering devices, especially as they play an increasingly important role in the National Health Service (NHS) in the UK. It argues that mHealth technologies should instead be framed as digital companions. This shift from empowerment to companionship is advocated by showing the conceptual, ethical, and methodological issues challenging the narrative of empowerment, and by arguing that such challenges, as well as the risk (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Democratizing Algorithmic Fairness.Pak-Hang Wong - 2020 - Philosophy and Technology 33 (2):225-244.
    Algorithms can now identify patterns and correlations in the (big) datasets, and predict outcomes based on those identified patterns and correlations with the use of machine learning techniques and big data, decisions can then be made by algorithms themselves in accordance with the predicted outcomes. Yet, algorithms can inherit questionable values from the datasets and acquire biases in the course of (machine) learning, and automated algorithmic decision-making makes it more difficult for people to see algorithms as biased. While researchers have (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Actionable Principles for Artificial Intelligence Policy: Three Pathways.Charlotte Stix - 2021 - Science and Engineering Ethics 27 (1):1-17.
    In the development of governmental policy for artificial intelligence that is informed by ethics, one avenue currently pursued is that of drawing on “AI Ethics Principles”. However, these AI Ethics Principles often fail to be actioned in governmental policy. This paper proposes a novel framework for the development of ‘Actionable Principles for AI’. The approach acknowledges the relevance of AI Ethics Principles and homes in on methodological elements to increase their practical implementability in policy processes. As a case study, elements (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The ethics of big data: current and foreseeable issues in biomedical contexts.Brent Daniel Mittelstadt & Luciano Floridi - 2016 - Science and Engineering Ethics 22 (2):303–341.
    The capacity to collect and analyse data is growing exponentially. Referred to as ‘Big Data’, this scientific, social and technological trend has helped create destabilising amounts of information, which can challenge accepted social and ethical norms. Big Data remains a fuzzy idea, emerging across social, scientific, and business contexts sometimes seemingly related only by the gigantic size of the datasets being considered. As is often the case with the cutting edge of scientific and technological progress, understanding of the ethical implications (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • The Role of Big Data in Ambient Assisted Living.Arne Manzeschke, Galia Assadi & Willy Viehöver - 2016 - International Review of Information Ethics 24.
    Big Data and biopolitics are two major issues currently attracting attention in public health discourse, but also in sociology of knowledge, STS Studies as well as in philosophy of science and bioethics. The paper considers big data to be a new form and instrument of biopolitics which addresses both the categories of body and space. It is expected to fundamentally transform health care systems, domestic environments and practices of self-observation and reflection. Accordingly the paper points out some problems and pitfalls (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Just data? Solidarity and justice in data-driven medicine.Matthias Braun & Patrik Hummel - 2020 - Life Sciences, Society and Policy 16 (1):1-18.
    This paper argues that data-driven medicine gives rise to a particular normative challenge. Against the backdrop of a distinction between the good and the right, harnessing personal health data towards the development and refinement of data-driven medicine is to be welcomed from the perspective of the good. Enacting solidarity drives progress in research and clinical practice. At the same time, such acts of sharing could—especially considering current developments in big data and artificial intelligence—compromise the right by leading to injustices and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations