Switch to: Citations

Add references

You must login to add references.
  1. Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Which set existence axioms are needed to prove the cauchy/peano theorem for ordinary differential equations?Stephen G. Simpson - 1984 - Journal of Symbolic Logic 49 (3):783-802.
    We investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA 0 whose principal axioms are ▵ 0 1 comprehension and Σ 0 1 induction. Our main result is that, over RCA 0 , the Cauchy/Peano Theorem is provably equivalent to weak Konig's lemma, i.e. the statement that every infinite {0, 1}-tree (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   238 citations  
  • The self-embedding theorem of WKL0 and a non-standard method.Kazuyuki Tanaka - 1997 - Annals of Pure and Applied Logic 84 (1):41-49.
    We prove that every countable non-standard model of WKL0 has a proper initial part isomorphic to itself. This theorem enables us to carry out non-standard arguments over WKL0.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Fixed point theory in weak second-order arithmetic.Naoki Shioji & Kazuyuki Tanaka - 1990 - Annals of Pure and Applied Logic 47 (2):167-188.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On Formalization of Model-Theoretic Proofs of Gödel's Theorems.Makoto Kikuchi & Kazuyuki Tanaka - 1994 - Notre Dame Journal of Formal Logic 35 (3):403-412.
    Within a weak subsystem of second-order arithmetic , that is -conservative over , we reformulate Kreisel's proof of the Second Incompleteness Theorem and Boolos' proof of the First Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Non‐standard Analysis in WKL 0.Kazuyuki Tanaka - 1997 - Mathematical Logic Quarterly 43 (3):396-400.
    Within a weak subsystem of second‐order arithmetic WKL0, we develop basic part of non‐standard analysis up to the Peano existence theorem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A non-standard construction of Haar measure and weak könig's lemma.Kazuyuki Tanaka & Takeshi Yamazaki - 2000 - Journal of Symbolic Logic 65 (1):173-186.
    In this paper, we show within RCA 0 that weak Konig's lemma is necessary and sufficient to prove that any (separable) compact group has a Haar measure. Within WKL 0 , a Haar measure is constructed by a non-standard method based on a fact that every countable non-standard model of WKL 0 has a proper initial part isomorphic to itself [10].
    Download  
     
    Export citation  
     
    Bookmark   4 citations