Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)How did LUCA make a living? Chemiosmosis in the origin of life.Nick Lane, John F. Allen & William Martin - 2010 - Bioessays 32 (4):271-280.
    Despite thermodynamic, bioenergetic and phylogenetic failings, the 81‐year‐old concept of primordial soup remains central to mainstream thinking on the origin of life. But soup is homogeneous in pH and redox potential, and so has no capacity for energy coupling by chemiosmosis. Thermodynamic constraints make chemiosmosis strictly necessary for carbon and energy metabolism in all free‐living chemotrophs, and presumably the first free‐living cells too. Proton gradients form naturally at alkaline hydrothermal vents and are viewed as central to the origin of life. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The nature of life: classical and contemporary perspectives from philosophy and science.Mark Bedau & Carol Cleland (eds.) - 2010 - New York: Cambridge University Press.
    Bringing together the latest scientific advances and some of the most enduring subtle philosophical puzzles and problems, this book collects original historical and contemporary sources to explore the wide range of issues surrounding the nature of life. Selections ranging from Aristotle and Descartes to Sagan and Dawkins are organised around four broad themes covering classical discussions of life, the origins and extent of natural life, contemporary artificial life creations and the definition and meaning of 'life' in its most general form. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The problem of the emergence of functional diversity in prebiotic evolution.Alvaro Moreno & Kepa Ruiz-Mirazo - 2009 - Biology and Philosophy 24 (5):585-605.
    Since Darwin it is widely accepted that natural selection (NS) is the most important mechanism to explain how biological organisms—in their amazing variety—evolve and, therefore, also how the complexity of certain natural systems can increase over time, creating ever new functions or functional structures/relationships. Nevertheless, the way in which NS is conceived within Darwinian Theory already requires an open, wide enough, functional domain where selective forces may act. And, as the present paper will try to show, this becomes even more (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Darwinian Populations and Natural Selection.Peter Godfrey-Smith - 2009 - Oxford, GB: Oxford University Press.
    The book presents a new way of understanding Darwinism and evolution by natural selection, combining work in biology, philosophy, and other fields.
    Download  
     
    Export citation  
     
    Bookmark   317 citations  
  • Replicator II – judgement day.Paul E. Griffiths & Russell D. Gray - 1997 - Biology and Philosophy 12 (4):471-492.
    The Developmental Systems approach to evolution is defended against the alternative extended replicator approach of Sterelny, Smith and Dickison (1996). A precise definition is provided of the spatial and temporal boundaries of the life-cycle that DST claims is the unit of evolution. Pacé Sterelny et al., the extended replicator theory is not a bulwark against excessive holism. Everything which DST claims is replicated in evolution can be shown to be an extended replicator on Sterelny et al.s definition. Reasons are given (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • The Selfish Gene. [REVIEW]Gunther S. Stent & Richard Dawkins - 1977 - Hastings Center Report 7 (6):33.
    Download  
     
    Export citation  
     
    Bookmark   1749 citations  
  • The Origins of Order: Self Organization and Selection in Evolution.Stuart A. Kauffman - 1993 - Oxford University Press.
    Stuart Kauffman here presents a brilliant new paradigm for evolutionary biology, one that extends the basic concepts of Darwinian evolution to accommodate recent findings and perspectives from the fields of biology, physics, chemistry and mathematics. The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order widely observed throughout nature. Kauffman here argues that self-organization plays an (...)
    Download  
     
    Export citation  
     
    Bookmark   451 citations  
  • Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science.David L. Hull - 1988 - University of Chicago Press.
    "Legend is overdue for replacement, and an adequate replacement must attend to the process of science as carefully as Hull has done. I share his vision of a serious account of the social and intellectual dynamics of science that will avoid both the rosy blur of Legend and the facile charms of relativism.... Because of [Hull's] deep concern with the ways in which research is actually done, Science as a Process begins an important project in the study of science. It (...)
    Download  
     
    Export citation  
     
    Bookmark   323 citations  
  • Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life.Eva Jablonka, Marion J. Lamb & Anna Zeligowski - 2005 - Bradford.
    Ideas about heredity and evolution are undergoing a revolutionary change. New findings in molecular biology challenge the gene-centered version of Darwinian theory according to which adaptation occurs only through natural selection of chance DNA variations. In Evolution in Four Dimensions, Eva Jablonka and Marion Lamb argue that there is more to heredity than genes. They trace four "dimensions" in evolution -- four inheritance systems that play a role in evolution: genetic, epigenetic, behavioral, and symbolic. These systems, they argue, can all (...)
    Download  
     
    Export citation  
     
    Bookmark   319 citations  
  • Compositional complementarity and prebiotic ecology in the origin of life.Axel Hunding, Francois Kepes, Doron Lancet, Abraham Minsky, Vic Norris, Derek Raine, K. Sriram & Robert Root-Bernstein - 2006 - Bioessays 28 (4):399-412.
    We hypothesize that life began not with the first self‐reproducing molecule or metabolic network, but as a prebiotic ecology of co‐evolving populations of macromolecular aggregates (composomes). Each composome species had a particular molecular composition resulting from molecular complementarity among environmentally available prebiotic compounds. Natural selection acted on composomal species that varied in properties and functions such as stability, catalysis, fission, fusion and selective accumulation of molecules from solution. Fission permitted molecular replication based on composition rather than linear structure, while fusion (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The extended replicator.Kim Sterelny, Kelly C. Smith & Michael Dickison - 1996 - Biology and Philosophy 11 (3):377-403.
    This paper evaluates and criticises the developmental systems conception of evolution and develops instead an extension of the gene's eye conception of evolution. We argue (i) Dawkin's attempt to segregate developmental and evolutionary issues about genes is unsatisfactory. On plausible views of development it is arbitrary to single out genes as the units of selection. (ii) The genotype does not carry information about the phenotype in any way that distinguishes the role of the genes in development from that other factors. (...)
    Download  
     
    Export citation  
     
    Bookmark   130 citations