Switch to: Citations

Add references

You must login to add references.
  1. (3 other versions)Principles of mathematics.Bertrand Russell - 1931 - New York,: W.W. Norton & Company.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege to a wider (...)
    Download  
     
    Export citation  
     
    Bookmark   463 citations  
  • Introduction to mathematical philosophy.Bertrand Russell - 1919 - New York: Dover Publications.
    Download  
     
    Export citation  
     
    Bookmark   391 citations  
  • The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as the (...)
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • Frege's conception of numbers as objects.Crispin Wright - 1983 - [Aberdeen]: Aberdeen University Press.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • Frege.Michael Dummett - 1981 - Cambridge: Harvard University Press.
    In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume ...
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Abstract objects.Bob Hale - 1987 - New York, NY, USA: Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
  • The limits of abstraction.Kit Fine - 2002 - New York: Oxford University Press. Edited by Matthias Schirn.
    Kit Fine develops a Fregean theory of abstraction, and suggests that it may yield a new philosophical foundation for mathematics, one that can account for both our reference to various mathematical objects and our knowledge of various mathematical truths. The Limits ofion breaks new ground both technically and philosophically.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, and (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • The consistency of Frege's foundations of arithmetic.George Boolos - 1987 - In Judith Jarvis Thomson (ed.), On Being and Saying: Essays for Richard Cartwright. MIT Press. pp. 3--20.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • The Julius Caesar objection.Richard Heck - 1997 - In Richard G. Heck (ed.), Language, thought, and logic: essays in honour of Michael Dummett. New York: Oxford University Press. pp. 273--308.
    This paper argues that that Caesar problem had a technical aspect, namely, that it threatened to make it impossible to prove, in the way Frege wanted, that there are infinitely many numbers. It then offers a solution to the problem, one that shows Frege did not really need the claim that "numbers are objects", not if that claim is intended in a form that forces the Caesar problem upon us.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The standard of equality of numbers.George Boolos - 1990 - In Meaning and Method: Essays in Honor of Hilary Putnam. Cambridge and New York: Cambridge University Press. pp. 261--77.
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • (1 other version)Reals by Abstraction.Bob Hale - 2000 - Philosophia Mathematica 8 (2):100--123.
    On the neo-Fregean approach to the foundations of mathematics, elementary arithmetic is analytic in the sense that the addition of a principle wliich may be held to IMJ explanatory of the concept of cardinal number to a suitable second-order logical basis suffices for the derivation of its basic laws. This principle, now commonly called Hume's principle, is an example of a Fregean abstraction principle. In this paper, I assume the correctness of the neo-Fregean position on elementary aritlunetic and seek to (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Language, thought, and logic: essays in honour of Michael Dummett.Richard G. Heck (ed.) - 1997 - New York: Oxford University Press.
    In this exciting new collection, a distinguished international group of philosophers contribute new essays on central issues in philosophy of language and logic, in honor of Michael Dummett, one of the most influential philosophers of the late twentieth century. The essays are focused on areas particularly associated with Professor Dummett. Five are contributions to the philosophy of language, addressing in particular the nature of truth and meaning and the relation between language and thought. Two contributors discuss time, in particular the (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Finitude and Hume’s Principle.Richard G. Heck - 1997 - Journal of Philosophical Logic 26 (6):589-617.
    The paper formulates and proves a strengthening of ‘Frege’s Theorem’, which states that axioms for second-order arithmetic are derivable in second-order logic from Hume’s Principle, which itself says that the number of Fs is the same as the number ofGs just in case the Fs and Gs are equinumerous. The improvement consists in restricting this claim to finite concepts, so that nothing is claimed about the circumstances under which infinite concepts have the same number. ‘Finite Hume’s Principle’ also suffices for (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Frege on knowing the foundation.Tyler Burge - 1998 - Mind 107 (426):305-347.
    The paper scrutinizes Frege's Euclideanism - his view of arithmetic and geometry as resting on a small number of self-evident axioms from which non-self-evident theorems can be proved. Frege's notions of self-evidence and axiom are discussed in some detail. Elements in Frege's position that are in apparent tension with his Euclideanism are considered - his introduction of axioms in The Basic Laws of Arithmetic through argument, his fallibilism about mathematical understanding, and his view that understanding is closely associated with inferential (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • (2 other versions)Frege and semantics.Richard G. Heck - 2007 - Grazer Philosophische Studien 75 (1):27-63.
    In recent work on Frege, one of the most salient issues has been whether he was prepared to make serious use of semantical notions such as reference and truth. I argue here Frege did make very serious use of semantical concepts. I argue, first, that Frege had reason to be interested in the question how the axioms and rules of his formal theory might be justified and, second, that he explicitly commits himself to offering a justification that appeals to the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Frege's notions of self-evidence.Robin Jeshion - 2001 - Mind 110 (440):937-976.
    Controversy remains over exactly why Frege aimed to estabish logicism. In this essay, I argue that the most influential interpretations of Frege's motivations fall short because they misunderstand or neglect Frege's claims that axioms must be self-evident. I offer an interpretation of his appeals to self-evidence and attempt to show that they reveal a previously overlooked motivation for establishing logicism, one which has roots in the Euclidean rationalist tradition. More specifically, my view is that Frege had two notions of self-evidence. (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • IX*—Saving Frege from Contradiction.George Boolos - 1987 - Proceedings of the Aristotelian Society 87 (1):137-152.
    George Boolos; IX*—Saving Frege from Contradiction, Proceedings of the Aristotelian Society, Volume 87, Issue 1, 1 June 1987, Pages 137–152, https://doi.org/10.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Frege's new science.G. Aldo Antonelli & Robert C. May - 2000 - Notre Dame Journal of Formal Logic 41 (3):242-270.
    In this paper, we explore Fregean metatheory, what Frege called the New Science. The New Science arises in the context of Frege’s debate with Hilbert over independence proofs in geometry and we begin by considering their dispute. We propose that Frege’s critique rests on his view that language is a set of propositions, each immutably equipped with a truth value (as determined by the thought it expresses), so to Frege it was inconceivable that axioms could even be considered to be (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Frege on extensions of concepts, from 1884 to 1903.Tyler Burge - 1984 - Philosophical Review 93 (1):3-34.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)The Philosophy of Mathematics Today.M. Schirn - 2000 - Studia Logica 64 (1):146-146.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Grundgesetze der Arithmetik I §§29‒32.Richard G. Heck - 1997 - Notre Dame Journal of Formal Logic 38 (3):437-474.
    Frege's intention in section 31 of Grundgesetze is to show that every well-formed expression in his formal system denotes. But it has been obscure why he wants to do this and how he intends to do it. It is argued here that, in large part, Frege's purpose is to show that the smooth breathing, from which names of value-ranges are formed, denotes; that his proof that his other primitive expressions denote is sound and anticipates Tarski's theory of truth; and that (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Frege: fra estensionalismo e logicismo.Aldo Antonelli - manuscript
    Due programmi diversi si intersecano nel lavoro di Frege sui fondamenti dell’aritmetica: • Logicismo: l’aritmetica `e riducibile alla logica; • Estensionalismo: l’aritmetica `e riducibile a una teoria delle estensioni. Sia nei Fondamenti che nei Principi, Frege articola l’idea che l’aritmetica sia riducibile a una teoria logica delle estensioni.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege's theorem and the peano postulates.George Boolos - 1995 - Bulletin of Symbolic Logic 1 (3):317-326.
    Two thoughts about the concept of number are incompatible: that any zero or more things have a number, and that any zero or more things have a number only if they are the members of some one set. It is Russell's paradox that shows the thoughts incompatible: the sets that are not members of themselves cannot be the members of any one set. The thought that any things have a number is Frege's; the thought that things have a number only (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Why is there so little sense in grundgesetze?Peter Simons - 1992 - Mind 101 (404):753-766.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Wright on Abstraction and Set Theory.Charles Parsons - 1997 - In Richard G. Heck (ed.), Language, thought, and logic: essays in honour of Michael Dummett. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Frege's proof of referentiality.Michael D. Resnik - 1986 - In Leila Haaparanta & Jaakko Hintikka (eds.), Frege Synthesized: Essays on the Philosophical and Foundational Work of Gottlob Frege. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 177--195.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fregean abstraction, referential indeterminacy and the logical foundations of arithmetic.Matthias Schirn - 2003 - Erkenntnis 59 (2):203 - 232.
    In Die Grundlagen der Arithmetik, Frege attempted to introduce cardinalnumbers as logical objects by means of a second-order abstraction principlewhich is now widely known as ``Hume's Principle'' (HP): The number of Fsis identical with the number of Gs if and only if F and G are equinumerous.The attempt miscarried, because in its role as a contextual definition HP fails tofix uniquely the reference of the cardinality operator ``the number of Fs''. Thisproblem of referential indeterminacy is usually called ``the Julius Caesar (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege on the Purpose and Fruitfulness of Definitions.M. Schirn - 1989 - Logique Et Analyse 32 (125-126):61-80.
    Download  
     
    Export citation  
     
    Bookmark   4 citations