Switch to: References

Add citations

You must login to add citations.
  1. The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • For Better and for Worse. Abstractionism, Good Company, and Pluralism.Andrea Sereni, Maria Paola Sforza Fogliani & Luca Zanetti - 2023 - Review of Symbolic Logic 16 (1):268-297.
    A thriving literature has developed over logical and mathematical pluralism – i.e. the views that several rival logical and mathematical theories can be equally correct. These have unfortunately grown separate; instead, they both could gain a great deal by a closer interaction. Our aim is thus to present some novel forms of abstractionist mathematical pluralism which can be modeled on parallel ways of substantiating logical pluralism (also in connection with logical anti-exceptionalism). To do this, we start by discussing the Good (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Varieties of Abstract Objects.James E. Davies - 2019 - Australasian Journal of Philosophy 97 (4):809-823.
    I reconcile the spatiotemporal location of repeatable artworks and impure sets with the non-location of natural numbers despite all three being varieties of abstract objects. This is possible because, while the identity conditions for all three can be given by abstraction principles, in the former two cases spatiotemporal location is a congruence for the equivalence relation featuring in the relevant principle, whereas in the latter it is not. I then generalize this to other ‘physical’ properties like shape, mass, and causal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Limits of Reconstructive Neologicist Epistemology.Eileen S. Nutting - 2018 - Philosophical Quarterly 68 (273):717-738.
    Wright claims that his and Hale’s abstractionist neologicist project is primarily epistemological in aim. Its epistemological aims include establishing the possibility of a priori mathematical knowledge, and establishing the possibility of reference to abstract mathematical objects. But, as Wright acknowledges, there is a question of how neologicist epistemology applies to actual, ordinary mathematical beliefs. I take up this question, focusing on arithmetic. Following a suggestion of Hale and Wright, I consider the possibility that the neologicist account provides an idealised reconstruction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-Fregeanism: An Embarrassment of Riches.Alan Weir - 2003 - Notre Dame Journal of Formal Logic 44 (1):13-48.
    Neo-Fregeans argue that substantial mathematics can be derived from a priori abstraction principles, Hume's Principle connecting numerical identities with one:one correspondences being a prominent example. The embarrassment of riches objection is that there is a plurality of consistent but pairwise inconsistent abstraction principles, thus not all consistent abstractions can be true. This paper considers and criticizes various further criteria on acceptable abstractions proposed by Wright settling on another one—stability—as the best bet for neo-Fregeans. However, an analogue of the embarrassment of (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.
    Frege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume’s Principle, which says that the number of F s is identical to the number of Gs if and only if the F s and the Gs can be one-to-one correlated. According to Frege’s Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume’s Principle, the other, with the underlying second-order logic—and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Abstraction and identity.Roy T. Cook & Philip A. Ebert - 2005 - Dialectica 59 (2):121–139.
    A co-authored article with Roy T. Cook forthcoming in a special edition on the Caesar Problem of the journal Dialectica. We argue against the appeal to equivalence classes in resolving the Caesar Problem.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Frege's Cardinals and Neo-Logicism.Roy T. Cook - 2016 - Philosophia Mathematica 24 (1):60-90.
    Gottlob Frege defined cardinal numbers in terms of value-ranges governed by the inconsistent Basic Law V. Neo-logicists have revived something like Frege's original project by introducing cardinal numbers as primitive objects, governed by Hume's Principle. A neo-logicist foundation for set theory, however, requires a consistent theory of value-ranges of some sort. Thus, it is natural to ask whether we can reconstruct the cardinal numbers by retaining Frege's definition and adopting an alternative consistent principle governing value-ranges. Given some natural assumptions regarding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege's Constraint.Crispin Wright - 2000 - Notre Dame Journal of Formal Logic 41 (4):317--334.
    We now know of a number of ways of developing real analysis on a basis of abstraction principles and second-order logic. One, outlined by Shapiro in his contribution to this volume, mimics Dedekind in identifying the reals with cuts in the series of rationals under their natural order. The result is an essentially structuralist conception of the reals. An earlier approach, developed by Hale in his "Reals byion" program differs by placing additional emphasis upon what I here term Frege's Constraint, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Cardinality, Counting, and Equinumerosity.Richard G. Heck - 2000 - Notre Dame Journal of Formal Logic 41 (3):187-209.
    Frege, famously, held that there is a close connection between our concept of cardinal number and the notion of one-one correspondence, a connection enshrined in Hume's Principle. Husserl, and later Parsons, objected that there is no such close connection, that our most primitive conception of cardinality arises from our grasp of the practice of counting. Some empirical work on children's development of a concept of number has sometimes been thought to point in the same direction. I argue, however, that Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Frege meets dedekind: A neologicist treatment of real analysis.Stewart Shapiro - 2000 - Notre Dame Journal of Formal Logic 41 (4):335--364.
    This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On finite hume.Fraser Macbride - 2000 - Philosophia Mathematica 8 (2):150-159.
    Neo-Fregeanism contends that knowledge of arithmetic may be acquired by second-order logical reflection upon Hume's principle. Heck argues that Hume's principle doesn't inform ordinary arithmetical reasoning and so knowledge derived from it cannot be genuinely arithmetical. To suppose otherwise, Heck claims, is to fail to comprehend the magnitude of Cantor's conceptual contribution to mathematics. Heck recommends that finite Hume's principle be employed instead to generate arithmetical knowledge. But a better understanding of Cantor's contribution is achieved if it is supposed that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Focus restored: Comments on John MacFarlane.Bob Hale & Crispin Wright - 2009 - Synthese 170 (3):457 - 482.
    In “Double Vision Two Questions about the Neo-Fregean Programme”, John MacFarlane’s raises two main questions: (1) Why is it so important to neo-Fregeans to treat expressions of the form ‘the number of Fs’ as a species of singular term? What would be lost, if anything, if they were analysed instead as a type of quantifier-phrase, as on Russell’s Theory of Definite Descriptions? and (2) Granting—at least for the sake of argument—that Hume’s Principle may be used as a means of implicitly (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Hume’s Big Brother: counting concepts and the bad company objection.Roy T. Cook - 2009 - Synthese 170 (3):349 - 369.
    A number of formal constraints on acceptable abstraction principles have been proposed, including conservativeness and irenicity. Hume’s Principle, of course, satisfies these constraints. Here, variants of Hume’s Principle that allow us to count concepts instead of objects are examined. It is argued that, prima facie, these principles ought to be no more problematic than HP itself. But, as is shown here, these principles only enjoy the formal properties that have been suggested as indicative of acceptability if certain constraints on the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Explicit Abstract Objects in Predicative Settings.Sean Ebels-Duggan & Francesca Boccuni - 2024 - Journal of Philosophical Logic 53 (5):1347-1382.
    Abstractionist programs in the philosophy of mathematics have focused on abstraction principles, taken as implicit definitions of the objects in the range of their operators. In second-order logic (SOL) with predicative comprehension, such principles are consistent but also (individually) mathematically weak. This paper, inspired by the work of Boolos (Proceedings of the Aristotelian Society 87, 137–151, 1986) and Zalta (Abstract Objects, vol. 160 of Synthese Library, 1983), examines explicit definitions of abstract objects. These axioms state that there is a unique (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deductive Cardinality Results and Nuisance-Like Principles.Sean C. Ebels-Duggan - 2021 - Review of Symbolic Logic 14 (3):592-623.
    The injective version of Cantor’s theorem appears in full second-order logic as the inconsistency of the abstraction principle, Frege’s Basic Law V (BLV), an inconsistency easily shown using Russell’s paradox. This incompatibility is akin to others—most notably that of a (Dedekind) infinite universe with the Nuisance Principle (NP) discussed by neo-Fregean philosophers of mathematics. This paper uses the Burali–Forti paradox to demonstrate this incompatibility, and another closely related, without appeal to principles related to the axiom of choice—a result hitherto unestablished. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Identifying finite cardinal abstracts.Sean C. Ebels-Duggan - 2020 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap. Abstractionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstraction Principles and the Classification of Second-Order Equivalence Relations.Sean C. Ebels-Duggan - 2019 - Notre Dame Journal of Formal Logic 60 (1):77-117.
    This article improves two existing theorems of interest to neologicist philosophers of mathematics. The first is a classification theorem due to Fine for equivalence relations between concepts definable in a well-behaved second-order logic. The improved theorem states that if an equivalence relation E is defined without nonlogical vocabulary, then the bicardinal slice of any equivalence class—those equinumerous elements of the equivalence class with equinumerous complements—can have one of only three profiles. The improvements to Fine’s theorem allow for an analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Neologicism, Frege's Constraint, and the Frege‐Heck Condition.Eric Snyder, Richard Samuels & Stewart Shapiro - 2018 - Noûs 54 (1):54-77.
    One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. In particular, they maintain that, if adopted, Frege’s Constraint adjudicates in favor of their preferred foundation – Hume’s Principle – and against alternatives, such as the Dedekind-Peano axioms. In what follows we establish two main claims. First, we show (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structural-Abstraction Principles.Graham Leach-Krouse - 2015 - Philosophia Mathematica:nkv033.
    In this paper, I present a class of ‘structural’ abstraction principles, and describe how they are suggested by some features of Cantor's and Dedekind's approach to abstraction. Structural abstraction is a promising source of mathematically tractable new axioms for the neo-logicist. I illustrate this by showing, first, how a theorem of Shelah gives a sufficient condition for consistency in the structural setting, solving what neo-logicists call the ‘bad company’ problem for structural abstraction. Second, I show how, in the structural setting, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Success by default?Augustín Rayo - 2003 - Philosophia Mathematica 11 (3):305-322.
    I argue that Neo-Fregean accounts of arithmetical language and arithmetical knowledge tacitly rely on a thesis I call [Success by Default]—the thesis that, in the absence of reasons to the contrary, we are justified in thinking that certain stipulations are successful. Since Neo-Fregeans have yet to supply an adequate defense of [Success by Default], I conclude that there is an important gap in Neo-Fregean accounts of arithmetical language and knowledge. I end the paper by offering a naturalistic remedy.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Amending Frege’s Grundgesetze der Arithmetik.Fernando Ferreira - 2005 - Synthese 147 (1):3-19.
    Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hume’s Principle and Axiom V Reconsidered: Critical Reflections on Frege and His Interpreters.Matthias Schirn - 2006 - Synthese 148 (1):171-227.
    In this paper, I shall discuss several topics related to Frege's paradigms of second-order abstraction principles and his logicism. The discussion includes a critical examination of some controversial views put forward mainly by Robin Jeshion, Tyler Burge, Crispin Wright, Richard Heck and John MacFarlane. In the introductory section, I try to shed light on the connection between logical abstraction and logical objects. The second section contains a critical appraisal of Frege's notion of evidence and its interpretation by Jeshion, the introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • A Puzzle About Ontological Commitments.Philip A. Ebert - 2008 - Philosophia Mathematica 16 (2):209-226.
    This paper raises and then discusses a puzzle concerning the ontological commitments of mathematical principles. The main focus here is Hume's Principle—a statement that, embedded in second-order logic, allows for a deduction of the second-order Peano axioms. The puzzle aims to put pressure on so-called epistemic rejectionism, a position that rejects the analytic status of Hume's Principle. The upshot will be to elicit a new and very basic disagreement between epistemic rejectionism and the neo-Fregeans, defenders of the analytic status of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Foundations of Mathematics: Metaphysics, Epistemology, Structure.Stewart Shapiro - 2004 - Philosophical Quarterly 54 (214):16 - 37.
    Since virtually every mathematical theory can be interpreted in set theory, the latter is a foundation for mathematics. Whether set theory, as opposed to any of its rivals, is the right foundation for mathematics depends on what a foundation is for. One purpose is philosophical, to provide the metaphysical basis for mathematics. Another is epistemic, to provide the basis of all mathematical knowledge. Another is to serve mathematics, by lending insight into the various fields. Another is to provide an arena (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • In Good Company? On Hume’s Principle and the Assignment of Numbers to Infinite Concepts.Paolo Mancosu - 2015 - Review of Symbolic Logic 8 (2):370-410.
    In a recent article, I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.
    Richard Kimberly Heck and Paolo Mancosu have claimed that the possibility of non-Cantorian assignments of cardinalities to infinite concepts shows that Hume's Principle (HP) is not implicit in the concept of cardinal number. Neologicism would therefore be threatened by the ‘good company' HP is kept by such alternative assignments. In his review of Mancosu's book, Bob Hale argues, however, that ‘getting different numerosities for different countable infinite collections depends on taking the groups in a certain order – but it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paolo Mancosu.*Abstraction and Infinity. [REVIEW]Roy T. Cook & Michael Calasso - 2019 - Philosophia Mathematica 27 (1):125-152.
    MancosuPaolo.* *ion and Infinity. Oxford University Press, 2016. ISBN: 978-0-19-872462-9. Pp. viii + 222.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege meets Brouwer.Stewart Shapiro & Øystein Linnebo - 2015 - Review of Symbolic Logic 8 (3):540-552.
    We show that, by choosing definitions carefully, a version of Frege's theorem can be proved in intuitionistic logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstractionism and Mathematical Singular Reference.Bahram Assadian - 2019 - Philosophia Mathematica 27 (2):177-198.
    ABSTRACT Is it possible to effect singular reference to mathematical objects in the abstractionist framework? I will argue that even if mathematical expressions pass the relevant syntactic and inferential tests to qualify as singular terms, that does not mean that their semantic function is to refer to a particular object. I will defend two arguments leading to this claim: the permutation argument for the referential indeterminacy of mathematical terms, and the argument from the semantic idleness of the terms introduced by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Julio césar problem.Fraser MacBride - 2005 - Dialectica 59 (2):223–236.
    One version of the Julius Caesar problem arises when we demand assurance that expressions drawn from different theories or stretches of discourse refer to different things. The counter‐Caesar problem arises when assurance is demanded that expressions drawn from different theories . refer to the same thing. The Julio César problem generalises from the counter‐Caesar problem. It arises when we seek reassurance that expressions drawn from different languages refer to the same kind of things . If the Julio César problem is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Double vision: two questions about the neo-Fregean program.John MacFarlane - 2009 - Synthese 170 (3):443-456.
    Much of The Reason’s Proper Study is devoted to defending the claim that simply by stipulating an abstraction principle for the “number-of” functor, we can simultaneously fix a meaning for this functor and acquire epistemic entitlement to the stipulated principle. In this paper, I argue that the semantic and epistemological principles Hale and Wright offer in defense of this claim may be too strong for their purposes. For if these principles are correct, it is hard to see why they do (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Ramified Frege Arithmetic.Richard G. Heck Jr - 2011 - Journal of Philosophical Logic 40 (6):715 - 735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege's definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark