Switch to: Citations

Add references

You must login to add references.
  1. Constructivism in Mathematics: An Introduction.A. S. Troelstra & Dirk Van Dalen - 1988 - Amsterdam: North Holland. Edited by D. van Dalen.
    The present volume is intended as an all-round introduction to constructivism. Here constructivism is to be understood in the wide sense, and covers in particular Brouwer's intuitionism, Bishop's constructivism and A.A. Markov's constructive recursive mathematics. The ending "-ism" has ideological overtones: "constructive mathematics is the (only) right mathematics"; we hasten, however, to declare that we do not subscribe to this ideology, and that we do not intend to present our material on such a basis.
    Download  
     
    Export citation  
     
    Bookmark   160 citations  
  • Ideas and Results in Proof Theory.Dag Prawitz & J. E. Fenstad - 1971 - Journal of Symbolic Logic 40 (2):232-234.
    Download  
     
    Export citation  
     
    Bookmark   146 citations  
  • Contraction-free sequent calculi for geometric theories with an application to Barr's theorem.Sara Negri - 2003 - Archive for Mathematical Logic 42 (4):389-401.
    Geometric theories are presented as contraction- and cut-free systems of sequent calculi with mathematical rules following a prescribed rule-scheme that extends the scheme given in Negri and von Plato. Examples include cut-free calculi for Robinson arithmetic and real closed fields. As an immediate consequence of cut elimination, it is shown that if a geometric implication is classically derivable from a geometric theory then it is intuitionistically derivable.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • A Logic Programming Language with Lambda-abstraction, Function Variables, and Simple Unification.Dale Miller - 1991 - LFCS, Department of Computer Science, University of Edinburgh.
    As a result of these restrictions, an implementation of L [subscript lambda] does not need to implement full higher-order unification. Instead, an extension to first-order unification that respects bound variable names and scopes is all that is required. Such unification problems are shown to be decidable and to possess most general unifiers when unifiers exist. A unification algorithm and logic programming interpreter are described and proved correct. Several examples of using L[subscript lambda] as a meta-programming language are presented.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Refined program extraction from classical proofs.Ulrich Berger, Wilfried Buchholz & Helmut Schwichtenberg - 2002 - Annals of Pure and Applied Logic 114 (1-3):3-25.
    The paper presents a refined method of extracting reasonable and sometimes unexpected programs from classical proofs of formulas of the form ∀x∃yB . We also generalize previously known results, since B no longer needs to be quantifier-free, but only has to belong to a strictly larger class of so-called “goal formulas”. Furthermore we allow unproven lemmas D in the proof of ∀x∃yB , where D is a so-called “definite” formula.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Minimal from classical proofs.Helmut Schwichtenberg & Christoph Senjak - 2013 - Annals of Pure and Applied Logic 164 (6):740-748.
    Let A be a formula without implications, and Γ consist of formulas containing disjunction and falsity only negatively and implication only positively. Orevkov and Nadathur proved that classical derivability of A from Γ implies intuitionistic derivability, by a transformation of derivations in sequent calculi. We give a new proof of this result , where the input data are natural deduction proofs in long normal form involving stability axioms for relations; the proof gives a quadratic algorithm to remove the stability axioms. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proof theory in the USSR 1925–1969.Grigori Mints - 1991 - Journal of Symbolic Logic 56 (2):385-424.
    We present a survey of proof theory in the USSR beginning with the paper by Kolmogorov [1925] and ending (mostly) in 1969; the last two sections deal with work done by A. A. Markov and N. A. Shanin in the early seventies, providing a kind of effective interpretation of negative arithmetic formulas. The material is arranged in chronological order and subdivided according to topics of investigation. The exposition is more detailed when the work is little known in the West or (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An Intuitionistic Axiomatisation of Real Closed Fields.Erik Palmgren - 2002 - Mathematical Logic Quarterly 48 (2):297-299.
    We give an intuitionistic axiomatisation of real closed fields which has the constructive reals as a model. The main result is that this axiomatisation together with just the decidability of the order relation gives the classical theory of real closed fields. To establish this we rely on the quantifier elimination theorem for real closed fields due to Tarski, and a conservation theorem of classical logic over intuitionistic logic for geometric theories.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Construction in Mathematics. An Introduction, Volume 1.A. S. Troelstra & D. van Dalen - 1990 - Studia Logica 49 (1):151-152.
    Download  
     
    Export citation  
     
    Bookmark   4 citations