Switch to: Citations

Add references

You must login to add references.
  1. Corrigendum to: "On the Strength of Ramsey's Theorem for Pairs".Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2009 - Journal of Symbolic Logic 74 (4):1438 - 1439.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
    We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen the conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths of proofs.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
    We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT $^n_{ denote (∀ k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X'' ≤ T 0 (n) . Let IΣ n and BΣ (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • The Structure of Models of Peano Arithmetic.Roman Kossak & James Schmerl - 2006 - Oxford, England: Clarendon Press.
    Aimed at graduate students, research logicians and mathematicians, this much-awaited text covers over 40 years of work on relative classification theory for nonstandard models of arithmetic. The book covers basic isomorphism invariants: families of type realized in a model, lattices of elementary substructures and automorphism groups.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Subsets of models of arithmetic.Roman Kossak & Jeffrey B. Paris - 1992 - Archive for Mathematical Logic 32 (1):65-73.
    We define certain properties of subsets of models of arithmetic related to their codability in end extensions and elementary end extensions. We characterize these properties using some more familiar notions concerning cuts in models of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A note on a theorem of Kanovei.Roman Kossak - 2004 - Archive for Mathematical Logic 43 (4):565-569.
    We give a short proof of a theorem of Kanovei on separating induction and collection schemes for Σ n formulas using families of subsets of countable models of arithmetic coded in elementary end extensions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations