Switch to: References

Add citations

You must login to add citations.
  1. Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Ramsey’s theorem for pairs, collection, and proof size.Leszek Aleksander Kołodziejczyk, Tin Lok Wong & Keita Yokoyama - 2023 - Journal of Mathematical Logic 24 (2).
    We prove that any proof of a [Formula: see text] sentence in the theory [Formula: see text] can be translated into a proof in [Formula: see text] at the cost of a polynomial increase in size. In fact, the proof in [Formula: see text] can be obtained by a polynomial-time algorithm. On the other hand, [Formula: see text] has nonelementary speedup over the weaker base theory [Formula: see text] for proofs of [Formula: see text] sentences. We also show that for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic.Takako Nemoto & Sato Kentaro - 2022 - Journal of Symbolic Logic 87 (2):437-497.
    We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with$\textbf {PRA}$or consistent provably in$\textbf {PRA}$) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among them (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Subsets coded in elementary end extensions.James H. Schmerl - 2014 - Archive for Mathematical Logic 53 (5-6):571-581.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Mathematical Instrumentalism.Patrick Caldon & Aleksandar Ignjatović - 2005 - Journal of Symbolic Logic 70 (3):778 - 794.
    In this paper we devise some technical tools for dealing with problems connected with the philosophical view usually called mathematical instrumentalism. These tools are interesting in their own right, independently of their philosophical consequences. For example, we show that even though the fragment of Peano's Arithmetic known as IΣ₁ is a conservative extension of the equational theory of Primitive Recursive Arithmetic (PRA). IΣ₁ has a super-exponential speed-up over PRA. On the other hand, theories studied in the Program of Reverse Mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A model-theoretic approach to ordinal analysis.Jeremy Avigad & Richard Sommer - 1997 - Bulletin of Symbolic Logic 3 (1):17-52.
    We describe a model-theoretic approach to ordinal analysis via the finite combinatorial notion of an α-large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first- and second-order arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A new model construction by making a detour via intuitionistic theories IV: A closer connection between KPω and BI.Kentaro Sato - 2024 - Annals of Pure and Applied Logic 175 (7):103422.
    Download  
     
    Export citation  
     
    Bookmark  
  • Marginalia on a theorem of Woodin.Rasmus Blanck & Ali Enayat - 2017 - Journal of Symbolic Logic 82 (1):359-374.
    Let$\left\langle {{W_n}:n \in \omega } \right\rangle$be a canonical enumeration of recursively enumerable sets, and supposeTis a recursively enumerable extension of PA (Peano Arithmetic) in the same language. Woodin (2011) showed that there exists an index$e \in \omega$(that depends onT) with the property that if${\cal M}$is a countable model ofTand for some${\cal M}$-finite sets,${\cal M}$satisfies${W_e} \subseteq s$, then${\cal M}$has an end extension${\cal N}$that satisfiesT+We=s.Here we generalize Woodin’s theorem to all recursively enumerable extensionsTof the fragment${{\rm{I}\rm{\Sigma }}_1}$of PA, and remove the countability restriction (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Notes on Pi^1_1 Conservativity, Omega-Submodels, and the Collection Schema.Jeremy Avigad - unknown
    These are some minor notes and observations related to a paper by Cholak, Jockusch, and Slaman [3].
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Harrington’s conservation theorem redone.Fernando Ferreira & Gilda Ferreira - 2008 - Archive for Mathematical Logic 47 (2):91-100.
    Leo Harrington showed that the second-order theory of arithmetic WKL 0 is ${\Pi^1_1}$ -conservative over the theory RCA 0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
    We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT $^n_{ denote (∀ k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X'' ≤ T 0 (n) . Let IΣ n and BΣ (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Unifying the model theory of first-order and second-order arithmetic via WKL 0 ⁎.Ali Enayat & Tin Lok Wong - 2017 - Annals of Pure and Applied Logic 168 (6):1247-1283.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Formalizing non-standard arguments in second-order arithmetic.Keita Yokoyama - 2010 - Journal of Symbolic Logic 75 (4):1199-1210.
    In this paper, we introduce the systems ns-ACA₀ and ns-WKL₀ of non-standard second-order arithmetic in which we can formalize non-standard arguments in ACA₀ and WKL₀, respectively. Then, we give direct transformations from non-standard proofs in ns-ACA₀ or ns-WKL₀ into proofs in ACA₀ or WKL₀.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some conservation results on weak König's lemma.Stephen G. Simpson, Kazuyuki Tanaka & Takeshi Yamazaki - 2002 - Annals of Pure and Applied Logic 118 (1-2):87-114.
    By , we denote the system of second-order arithmetic based on recursive comprehension axioms and Σ10 induction. is defined to be plus weak König's lemma: every infinite tree of sequences of 0's and 1's has an infinite path. In this paper, we first show that for any countable model M of , there exists a countable model M′ of whose first-order part is the same as that of M, and whose second-order part consists of the M-recursive sets and sets not (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Eliminating definitions and Skolem functions in first-order logic.Jeremy Avigad - manuscript
    From proofs in any classical first-order theory that proves the existence of at least two elements, one can eliminate definitions in polynomial time. From proofs in any classical first-order theory strong enough to code finite functions, including sequential theories, one can also eliminate Skolem functions in polynomial time.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Saturated models of universal theories.Jeremy Avigad - 2002 - Annals of Pure and Applied Logic 118 (3):219-234.
    A notion called Herbrand saturation is shown to provide the model-theoretic analogue of a proof-theoretic method, Herbrand analysis, yielding uniform model-theoretic proofs of a number of important conservation theorems. A constructive, algebraic variation of the method is described, providing yet a third approach, which is finitary but retains the semantic flavor of the model-theoretic version.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Strict $${\Pi^1_1}$$ -reflection in bounded arithmetic.António M. Fernandes - 2010 - Archive for Mathematical Logic 49 (1):17-34.
    We prove two conservation results involving a generalization of the principle of strict ${\Pi^1_1}$ -reflection, in the context of bounded arithmetic. In this context a separation between the concepts of bounded set and binary sequence seems to emerge as fundamental.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A new model construction by making a detour via intuitionistic theories III: Ultrafinitistic proofs of conservations of Σ 1 1 collection. [REVIEW]Kentaro Sato - 2023 - Annals of Pure and Applied Logic 174 (3):103207.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 10th Asian Logic Conference: Sponsored by the Association for Symbolic Logic.Toshiyasu Arai - 2009 - Bulletin of Symbolic Logic 15 (2):246-265.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new conservation result of WKL 0 over RCA 0.António Marques Fernandes - 2002 - Archive for Mathematical Logic 41 (1):55-63.
    In this paper we give a partial answer to a conjecture of Tanaka. We prove that: if WKL0 proves a sentence of the form (∀X)(∃!Y)ψ(X, Y) for a Σ03-formula ψ, then so does RCA0.
    Download  
     
    Export citation  
     
    Bookmark   2 citations