Switch to: Citations

Add references

You must login to add references.
  1. The stability spectrum for classes of atomic models.John T. Baldwin & Saharon Shelah - 2012 - Journal of Mathematical Logic 12 (1):1250001-.
    We prove two results on the stability spectrum for Lω1,ω. Here [Formula: see text] denotes an appropriate notion of Stone space of m-types over M. Theorem for unstable case: Suppose that for some positive integer m and for every α μ, K is not i-stable in μ. These results provide a new kind of sufficient condition for the unstable case and shed some light on the spectrum of strictly stable theories in this context. The methods avoid the use of compactness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Models without indiscernibles.Fred G. Abramson & Leo A. Harrington - 1978 - Journal of Symbolic Logic 43 (3):572-600.
    For T any completion of Peano Arithmetic and for n any positive integer, there is a model of T of size $\beth_n$ with no (n + 1)-length sequence of indiscernibles. Hence the Hanf number for omitting types over T, H(T), is at least $\beth_\omega$ . (Now, using an upper bound previously obtained by Julia Knight H (true arithmetic) is exactly $\beth_\omega$ ). If T ≠ true arithmetic, then $H(T) = \beth_{\omega1}$ . If $\delta \not\rightarrow (\rho)^{ , then any completion of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On ◁∗-maximality.Mirna Džamonja & Saharon Shelah - 2004 - Annals of Pure and Applied Logic 125 (1-3):119-158.
    This paper investigates a connection between the semantic notion provided by the ordering * among theories in model theory and the syntactic SOPn hierarchy of Shelah. It introduces two properties which are natural extensions of this hierarchy, called SOP2 and SOP1. It is shown here that SOP3 implies SOP2 implies SOP1. In Shelah's article 229) it was shown that SOP3 implies *-maximality and we prove here that *-maximality in a model of GCH implies a property called SOP2″. It has been (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Karp complexity and classes with the independence property.M. C. Laskowski & S. Shelah - 2003 - Annals of Pure and Applied Logic 120 (1-3):263-283.
    A class K of structures is controlled if for all cardinals λ, the relation of L∞,λ-equivalence partitions K into a set of equivalence classes . We prove that no pseudo-elementary class with the independence property is controlled. By contrast, there is a pseudo-elementary class with the strict order property that is controlled 69–88).
    Download  
     
    Export citation  
     
    Bookmark   6 citations