Switch to: Citations

Add references

You must login to add references.
  1. Diamonds, uniformization.Saharon Shelah - 1984 - Journal of Symbolic Logic 49 (4):1022-1033.
    Assume G.C.H. We prove that for singular λ, □ λ implies the diamonds hold for many $S \subseteq \lambda^+$ (including $S \subseteq \{\delta:\delta \in \lambda^+, \mathrm{cf}\delta = \mathrm{cf}\delta = \mathrm{cf}\lambda\}$ . We also have complementary consistency results.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Applications of PCF theory.Saharon Shelah - 2000 - Journal of Symbolic Logic 65 (4):1624-1674.
    We deal with several pcf problems: we characterize another version of exponentiation: maximal number of κ-branches in a tree with λ nodes, deal with existence of independent sets in stable theories, possible cardinalities of ultraproducts and the depth of ultraproducts of Boolean Algebras. Also we give cardinal invariants for each λ with a pcf restriction and investigate further T D (f). The sections can be read independently, although there are some minor dependencies.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Set theory without choice: not everything on cofinality is possible.Saharon Shelah - 1997 - Archive for Mathematical Logic 36 (2):81-125.
    Abstract.We prove in ZF+DC, e.g. that: if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mu=|{\cal H}(\mu)|$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mu>\cf(\mu)>\aleph_0$\end{document} then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mu ^+$\end{document} is regular but non measurable. This is in contrast with the results on measurability for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mu=\aleph_\omega$\end{document} due to Apter and Magidor [ApMg].
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • PCF and infinite free subsets in an algebra.Saharon Shelah - 2002 - Archive for Mathematical Logic 41 (4):321-359.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reflecting stationary sets and successors of singular cardinals.Saharon Shelah - 1991 - Archive for Mathematical Logic 31 (1):25-53.
    REF is the statement that every stationary subset of a cardinal reflects, unless it fails to do so for a trivial reason. The main theorem, presented in Sect. 0, is that under suitable assumptions it is consistent that REF and there is a κ which is κ+n -supercompact. The main concepts defined in Sect. 1 are PT, which is a certain statement about the existence of transversals, and the “bad” stationary set. It is shown that supercompactness (and even the failure (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Combinatorial problems on trees: partitions, DELTA-systems and large free subtrees.M. Rubin - 1987 - Annals of Pure and Applied Logic 33 (1):43.
    Download  
     
    Export citation  
     
    Bookmark   9 citations