Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)The Complexity of Propositional Proofs.Nathan Segerlind - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • An Introduction to Proof Theory.Samuel R. Buss - 2000 - Bulletin of Symbolic Logic 6 (4):464-465.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (2 other versions)The complexity of propositional proofs.Alasdair Urquhart - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The proof complexity of linear algebra.Michael Soltys & Stephen Cook - 2004 - Annals of Pure and Applied Logic 130 (1-3):277-323.
    We introduce three formal theories of increasing strength for linear algebra in order to study the complexity of the concepts needed to prove the basic theorems of the subject. We give what is apparently the first feasible proofs of the Cayley–Hamilton theorem and other properties of the determinant, and study the propositional proof complexity of matrix identities such as AB=I→BA=I.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Matrix identities and the pigeonhole principle.Michael Soltys & Alasdair Urquhart - 2004 - Archive for Mathematical Logic 43 (3):351-357.
    We show that short bounded-depth Frege proofs of matrix identities, such as PQ=I⊃QP=I (over the field of two elements), imply short bounded-depth Frege proofs of the pigeonhole principle. Since the latter principle is known to require exponential-size bounded-depth Frege proofs, it follows that the propositional version of the matrix principle also requires bounded-depth Frege proofs of exponential size.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Polynomial size proofs of the propositional pigeonhole principle.Samuel R. Buss - 1987 - Journal of Symbolic Logic 52 (4):916-927.
    Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   32 citations