Switch to: Citations

Add references

You must login to add references.
  1. Bohmian Classical Limit in Bounded Regions.Davide Romano - 2016 - In Felline Laura & L. Felline A. Paoli F. Ledda E. Rossanese (eds.), New Directions in Logic and the Philosophy of Science (SILFS proceedings, vol. 3). College Publications. pp. 303-317.
    Bohmian mechanics is a realistic interpretation of quantum theory. It shares the same ontology of classical mechanics: particles following continuous trajectories in space through time. For this ontological continuity, it seems to be a good candidate for recovering the classical limit of quantum theory. Indeed, in a Bohmian framework, the issue of the classical limit reduces to showing how classical trajectories can emerge from Bohmian ones, under specific classicality assumptions. In this paper, we shall focus on a technical problem that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Scientific Image.William Demopoulos & Bas C. van Fraassen - 1982 - Philosophical Review 91 (4):603.
    Download  
     
    Export citation  
     
    Bookmark   1792 citations  
  • The emergence and interpretation of probability in Bohmian mechanics.Craig Callender - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):351-370.
    A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The emergence and interpretation of probability in Bohmian mechanics.Craig Callender - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):351-370.
    A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • A subjectivist’s guide to objective chance.David K. Lewis - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 263-293.
    Download  
     
    Export citation  
     
    Bookmark   602 citations  
  • On the plurality of quantum theories: Quantum theory as a framework and its implications for the quantum measurement problem.David Wallace - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    `Quantum theory' is not a single physical theory but a framework in which many different concrete theories fit. As such, a solution to the quantum measurement problem ought to provide a recipe to interpret each such concrete theory, in a mutually consistent way. But with the exception of the Everett interpretation, the mainextant solutions either try to make sense of the abstract framework as if it were concrete, or else interpret one particular quantum theory under the fiction that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Conceptual Foundations of Quantum Mechanics.Jeffrey Alan Barrett - 2019 - Oxford, UK: Oxford University Press.
    This book provides an introduction to the conceptual foundations of quantum mechanics, from classical mechanics and a discussion of the quantum phenomena that undermine our classical intuitions about how the physical world works, to the quantum measurement problem and alternatives to the standard von Neumann-Dirac formulation.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Isolated systems and their symmetries, part II: Local and global symmetries of field theories.David Wallace - 2022 - Studies in History and Philosophy of Science Part A 92 (C):249-259.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):415-439.
    An analysis is made of Deutsch's recent claim to have derived the Born rule from decision-theoretic assumptions. It is argued that Deutsch's proof must be understood in the explicit context of the Everett interpretation, and that in this context, it essentially succeeds. Some comments are made about the criticism of Deutsch's proof by Barnum, Caves, Finkelstein, Fuchs, and Schack; it is argued that the flaw which they point out in the proof does not apply if the Everett interpretation is assumed.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Evidence and Uncertainty in Everett’s Multiverse.Paul Tappenden - 2011 - British Journal for the Philosophy of Science 62 (1):99-123.
    How does it come about then, that great scientists such as Einstein, Schrödinger and De Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled not against the correctness of the formulae, but against their interpretation. [...] The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Branching and Uncertainty.Simon Saunders & David Wallace - 2008 - British Journal for the Philosophy of Science 59 (3):293-305.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utterances typically made about (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Interpretation neutrality in the classical domain of quantum theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Multi-field and Bohm’s theory.Davide Romano - 2020 - Synthese (11):29 June 2020.
    In the recent literature, it has been shown that the wave function in the de Broglie–Bohm theory can be regarded as a new kind of field, i.e., a "multi-field", in three-dimensional space. In this paper, I argue that the natural framework for the multi-field is the original second-order Bohm’s theory. In this context, it is possible: i) to construe the multi-field as a real-valued scalar field; ii) to explain the physical interaction between the multi-field and the Bohmian particles; and iii) (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • In defence of Everettian decision theory.James Read - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:136-140.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Accuracy, Chance, and the Principal Principle.Richard Pettigrew - 2012 - Philosophical Review 121 (2):241-275.
    In ‘A Non-Pragmatic Vindication of Probabilism’, Jim Joyce attempts to ‘depragmatize’ de Finetti’s prevision argument for the claim that our partial beliefs ought to satisfy the axioms of probability calculus. In this paper, I adapt Joyce’s argument to give a non-pragmatic vindication of various versions of David Lewis’ Principal Principle, such as the version based on Isaac Levi's account of admissibility, Michael Thau and Ned Hall's New Principle, and Jenann Ismael's Generalized Principal Principle. Joyce enumerates properties that must be had (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Many Minds are No Worse than One.David Papineau - 1996 - British Journal for the Philosophy of Science 47 (2):233-241.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Uncertainty and probability for branching selves.Peter J. Lewis - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Uncertainty and probability for branching selves.Peter J. Lewis - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • A Reconstruction of Quantum Mechanics.Simon Kochen - 2015 - Foundations of Physics 45 (5):557-590.
    We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann–Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Two mistakes about credence and chance.Ned Hall - 2004 - Australasian Journal of Philosophy 82 (1):93 – 111.
    David Lewis's influential work on the epistemology and metaphysics of objective chance has convinced many philosophers of the central importance of the following two claims: First, it is a serious cost of reductionist positions about chance (such as that occupied by Lewis) that they are, apparently, forced to modify the Principal Principle--the central principle relating objective chance to rational subjective probability--in order to avoid contradiction. Second, it is a perhaps more serious cost of the rival non-reductionist position that, unlike reductionism, (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Raid! Dissolving the big, bad bug.Jenann Ismael - 2008 - Noûs 42 (2):292–307.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Derivation of the born rule from operational assumptions.Simon Saunders - manuscript
    The Born rule is derived from operational assumptions, together with assumptions of quantum mechanics that concern only the deterministic development of the state. Unlike Gleason’s theorem, the argument applies even if probabilities are de…ned for only a single resolution of the identity, so it applies to a variety of foundational approaches to quantum mechanics. It also provides a probability rule for state spaces that are not Hilbert spaces.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Curious and sublime: the connection between uncertainty and probability in physics.Harvey R. Brown - unknown
    From its first significant appearance in physics, the notion of probability has been linked in the minds of physicists with the notion of uncertainty. But the link may prove to be tenuous, if quantum mechanics, construed in terms of the Everett interpretation, is anything to go by.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quasiclassical Realms.Jim Hartle - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Chance in the Everett interpretation.Simon Saunders - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Chance in the Everett interpretation.Simon Saunders - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    According to the Everett interpretation, branching structure and ratios of norms of branch amplitudes are the objective correlates of chance events and chances; that is, 'chance' and 'chancing', like 'red' and 'colour', pick out objective features of reality, albeit not what they seemed. Once properly identified, questions about how and in what sense chances can be observed can be treated as straightforward dynamical questions. On that basis, given the unitary dynamics of quantum theory, it follows that relative and never absolute (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Quantum Equilibrium and the Origin of Absolute Uncertainty.Detlef Durr, Sheldon Goldstein & Nino Zanghi - 1992 - Journal of Statistical Physics 67:843-907.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • A Reconstruction of Quantum Mechanics.Simon Kochen - 2019 - In Alberto Cordero (ed.), Philosophers Look at Quantum Mechanics. Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quasiclassical Realms.Jim Hartle - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   490 citations  
  • Quantum Mechanics in the Light of Quantum Cosmology.Murray Gell-Mann & James Hartle - 1990 - In W. Zurek (ed.), Complexity, Entropy, and the Physics of Information. Addison-Wesley.
    Download  
     
    Export citation  
     
    Bookmark   119 citations