Switch to: References

Citations of:

Quantum Mechanics in the Light of Quantum Cosmology

In Wojciech H. Zurek (ed.), Complexity, Entropy, and the Physics of Information. Addison-Wesley (1990)

Add citations

You must login to add citations.
  1. Quantising on a Category.C. J. Isham - 2005 - Foundations of Physics 35 (2):271-297.
    We review the problem of finding a general framework within which one can construct quantum theories of non-standard models for space, or space-time. The starting point is the observation that entities of this type can typically be regarded as objects in a category whose arrows are structure-preserving maps. This motivates investigating the general problem of quantising a system whose ‘configuration space’ (or history-theory analogue) is the set of objects Ob(Q) in a category Q. We develop a scheme based on constructing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Quantum Mechanics of Minds and Worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
    Download  
     
    Export citation  
     
    Bookmark  
  • Probability and nonlocality in many minds interpretations of quantum mechanics.Meir Hemmo & Itamar Pitowsky - 2003 - British Journal for the Philosophy of Science 54 (2):225-243.
    We argue that certain types of many minds (and many worlds) interpretations of quantum mechanics, e.g. Lockwood ([1996a]), Deutsch ([1985]) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's ([1988]) version of the many minds interpretation, there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it implies a certain (weak) form of nonlocality. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Decoherence in a Pragmatist View: Dispelling Feynman’s Mystery. [REVIEW]Richard Healey - 2012 - Foundations of Physics 42 (12):1534-1555.
    The quantum theory of decoherence plays an important role in a pragmatist interpretation of quantum theory. It governs the descriptive content of claims about values of physical magnitudes and offers advice on when to use quantum probabilities as a guide to their truth. The content of a claim is to be understood in terms of its role in inferences. This promises a better treatment of meaning than that offered by Bohr. Quantum theory models physical systems with no mention of measurement: (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dissipating the quantum measurement problem.Richard Healey - 1995 - Topoi 14 (1):55-65.
    The integration of recent work on decoherence into a so-called modal interpretation offers a promising new approach to the measurement problem in quantum mechanics. In this paper I explain and develop this approach in the context of the interactive interpretation presented in Healey (1989). I begin by questioning a number of assumptions which are standardly made in setting up the measurement problem, and I conclude that no satisfactory solution can afford to ignore the influence of the environment. Further, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The consistency of consistent histories: A reply to d'Espagnat. [REVIEW]Robert B. Griffiths - 1993 - Foundations of Physics 23 (12):1601-1610.
    This article is a response to various assertions made by B. d'Espagnat about the consistent history approach to quantum mechanics. It is argued that the consistent history interpretation allows for counterfactual definitions, does not imply that the future influences the past, is “realistic” according to d'Espagnat's own definition of that term, and provides a consistent substitute for classical logic in the quantum domain.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum Locality.Robert B. Griffiths - 2011 - Foundations of Physics 41 (4):705-733.
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Probabilities and Quantum Reality: Are There Correlata? [REVIEW]Robert B. Griffiths - 2003 - Foundations of Physics 33 (10):1423-1459.
    Any attempt to introduce probabilities into quantum mechanics faces difficulties due to the mathematical structure of Hilbert space, as reflected in Birkhoff and von Neumann's proposal for a quantum logic. The (consistent or decoherent) histories solution is provided by its single framework rule, an approach that includes conventional (Copenhagen) quantum theory as a special case. Mermin's Ithaca interpretation addresses the same problem by defining probabilities which make no reference to a sample space or event algebra (“correlations without correlata”). But this (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert space quantum mechanics is noncontextual.Robert B. Griffiths - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):174-181.
    It is shown that quantum mechanics is noncontextual if quantum properties are represented by subspaces of the quantum Hilbert space rather than by hidden variables. In particular, a measurement using an appropriately constructed apparatus can be shown to reveal the value of an observable A possessed by the measured system before the measurement took place, whatever other compatible observable B may be measured at the same time.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Path Integrals and Holism.Marco Forgione - 2020 - Foundations of Physics 50 (8):799-827.
    This paper argues that the path integral formulation of quantum mechanics suggests a form of holism for which the whole (total ensemble of paths) has properties that are not strongly reducible to the properties of the parts (the single trajectories). Feynman’s sum over histories calculates the probability amplitude of a particle moving within a boundary by summing over all the possible trajectories that the particle can undertake. These trajectories and their individual probability amplitudes are thus necessary in calculating the total (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sciences of Observation.Chris Fields - 2018 - Philosophies 3 (4):29.
    Multiple sciences have converged, in the past two decades, on a hitherto mostly unremarked question: what is observation? Here, I examine this evolution, focusing on three sciences: physics, especially quantum information theory, developmental biology, especially its molecular and “evo-devo” branches, and cognitive science, especially perceptual psychology and robotics. I trace the history of this question to the late 19th century, and through the conceptual revolutions of the 20th century. I show how the increasing interdisciplinary focus on the process of extracting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A global equilibrium as the foundation of quantum randomness.Detlef Dürr, Sheldon Goldstein & Nino Zanghí - 1993 - Foundations of Physics 23 (5):721-738.
    We analyze the origin of quantum randomness within the framework of a completely deterministic theory of particle motion—Bohmian mechanics. We show that a universe governed by this mechanics evolves in such a way as to give rise to the appearance of randomness, with empirical distributions in agreement with the predictions of the quantum formalism. Crucial ingredients in our analysis are the concept of the effective wave function of a subsystem and that of a random system. The latter is a notion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Towards a separable “empirical reality”?Bernard D'Espagnat - 1990 - Foundations of Physics 20 (10):1147-1172.
    “To be” or “to be found”? Some contributions relative to this modern variant of Hamlet's question are presented here. They aim at better apprehending the differences between the points of view of the physicists who consider that present-day quantum measurement theories do reach their objective and those who deny they do. It is pointed out that these two groups have different interpretations of the verbs “to be” and “to have” and of the criterion for truth. These differences are made explicit. (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Self-induced decoherence: a new approach.Mario Castagnino & Olimpia Lombardi - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):73-107.
    According to Zurek, decoherence is a process resulting from the interaction between a quantum system and its environment; this process singles out a preferred set of states, usually called “pointer basis”, that determines which observables will receive definite values. This means that decoherence leads to a sort of selection which precludes all except a small subset of the states in the Hilbert space of the system from behaving in a classical manner: environment-induced-superselection—einselection —is a consequence of the process of decoherence. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Interpretations of Quantum Theory in the Light of Modern Cosmology.Mario Castagnino, Sebastian Fortin, Roberto Laura & Daniel Sudarsky - 2017 - Foundations of Physics 47 (11):1387-1422.
    The difficult issues related to the interpretation of quantum mechanics and, in particular, the “measurement problem” are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott’s problem.
    Download  
     
    Export citation  
     
    Bookmark  
  • Subjective decoherence in quantum measurements.Thomas Breuer - 1996 - Synthese 107 (1):1 - 17.
    General results about restrictions on measurements from inside are applied to quantum mechanics. They imply subjective decoherence: For an apparatus it is not possible to determine whether the joint system consisting of itself and the observed system is in a statistical state with or without interference terms; it is possible that the apparatus systematically mistakes the real pure state of the joint system for the decohered state. We discuss the relevance of subjective decoherence for quantum measurements and for the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Mechanics and the Plight of Physicalism.Fernando Birman - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):207-225.
    The literature on physicalism often fails to elucidate, I think, what the word physical in physical ism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental , such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of non-mentality”, is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Everett's “Many-Worlds” proposal.Brett Maynard Bevers - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):3-12.
    Hugh Everett III proposed that a quantum measurement can be treated as an interaction that correlates microscopic and macroscopic systems—particularly when the experimenter herself is included among those macroscopic systems. It has been difficult, however, to determine precisely what this proposal amounts to. Almost without exception, commentators have held that there are ambiguities in Everett’s theory of measurement that result from significant—even embarrassing—omissions. In the present paper, we resist the conclusion that Everett’s proposal is incomplete, and we develop a close (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Interpreting Quantum Mechanics according to a Pragmatist Approach.Manuel Bächtold - 2008 - Foundations of Physics 38 (9):843-868.
    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Introduction.Jeffrey A. Barrett - 1995 - Topoi 14 (1):1-6.
    On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Everett’s pure wave mechanics and the notion of worlds.Jeffrey A. Barrett - 2011 - European Journal for Philosophy of Science 1 (2):277-302.
    Everett (1957a, b, 1973) relative-state formulation of quantum mechanics has often been taken to involve a metaphysical commitment to the existence of many splitting worlds each containing physical copies of observers and the objects they observe. While there was earlier talk of splitting worlds in connection with Everett, this is largely due to DeWitt’s (Phys Today 23:30–35, 1970) popular presentation of the theory. While the thought of splitting worlds or parallel universes has captured the popular imagination, Everett himself favored the (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Empirical adequacy and the availability of reliable records in quantum mechanics.Jeffrey A. Barrett - 1996 - Philosophy of Science 63 (1):49-64.
    In order to judge whether a theory is empirically adequate one must have epistemic access to reliable records of past measurement results that can be compared against the predictions of the theory. Some formulations of quantum mechanics fail to satisfy this condition. The standard theory without the collapse postulate is an example. Bell's reading of Everett's relative-state formulation is another. Furthermore, there are formulations of quantum mechanics that only satisfy this condition for a special class of observers, formulations whose empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Probability, arrow of time and decoherence.Guido Bacciagaluppi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):439-456.
    This paper relates both to the metaphysics of probability and to the physics of time asymmetry. Using the formalism of decoherent histories, it investigates whether intuitions about intrinsic time directedness that are often associated with probability can be justified in the context of no-collapse approaches to quantum mechanics. The standard approach to time symmetry in the decoherent histories literature is criticised, and an alternative approach is proposed, based on two decoherence conditions within the one-vector formalism. In turn, considerations of forwards (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Probability, arrow of time and decoherence.Guido Bacciagaluppi - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):439-456.
    This paper relates both to the metaphysics of probability and to the physics of time asymmetry. Using the formalism of decoherent histories, it investigates whether intuitions about intrinsic time directedness that are often associated with probability can be justified in the context of no-collapse approaches to quantum mechanics. The standard approach to time symmetry in the decoherent histories literature is criticised, and an alternative approach is proposed, based on two decoherence conditions within the one-vector formalism. In turn, considerations of forwards (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Quantum Theory Without Hilbert Spaces.C. Anastopoulos - 2001 - Foundations of Physics 31 (11):1545-1580.
    Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classical Versus Quantum Probability in Sequential Measurements.Charis Anastopoulos - 2006 - Foundations of Physics 36 (11):1601-1661.
    We demonstrate in this paper that the probabilities for sequential measurements have features very different from those of single-time measurements. First, they cannot be modelled by a classical stochastic process. Second, they are contextual, namely they depend strongly on the specific measurement scheme through which they are determined. We construct Positive-Operator-Valued measures (POVM) that provide such probabilities. For observables with continuous spectrum, the constructed POVMs depend strongly on the resolution of the measurement device, a conclusion that persists even if we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On what it takes to be a world.David Z. Albert & Jeffrey A. Barrett - 1995 - Topoi 14 (1):35-37.
    A many-worlds interpretation is of quantum mechanics tells us that the linear equations of motion are the true and complete laws for the time-evolution of every physical system and that the usual quantum-mechanical states provide complete descriptions of all possible physical situations. Such an interpretation, however, denies the standard way of understanding quantum-mechanical states. When the pointer on a measuring device is in a superposition of pointing many different directions, for example, we are to understand this as many pointers, each (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The problem of confirmation in the Everett interpretation.Emily Adlam - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:21-32.
    I argue that the Oxford school Everett interpretation is internally incoherent, because we cannot claim that in an Everettian universe the kinds of reasoning we have used to arrive at our beliefs about quantum mechanics would lead us to form true beliefs. I show that in an Everettian context, the experimental evidence that we have available could not provide empirical confirmation for quantum mechanics, and moreover that we would not even be able to establish reference to the theoretical entities of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Relational Quantum Mechanics and Contextuality.Calum Robson - 2024 - Foundations of Physics 54 (4):1-22.
    This paper discusses the question of stable facts in relational quantum mechanics (RQM). I examine how the approach to quantum logic in the consistent histories formalism can be used to clarify what infomation about a system can be shared between different observers. I suggest that the mathematical framework for Consistent Histories can and should be incorporated into RQM, whilst being clear on the interpretational differences between the two approaches. Finally I briefly discuss two related issues: the similarities and differences between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite Frequentism Explains Quantum Probability.Simon Saunders - forthcoming - British Journal for the Philosophy of Science.
    I show that frequentism, as an explanation of probability in classical statistical mechanics, can be extended in a natural way to a decoherent quantum history space, the analogue of a classical phase space. The result is a form of finite frequentism, in which Gibbs’ concept of an infinite ensemble of gases is replaced by the quantum state expressed as a superposition of a finite number of decohering microstates. It is a form of finite and actual frequentism (as opposed to hypothetical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Metaphysical indeterminacy in the multiverse.Claudio Calosi & Jessica Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer. pp. 375-395.
    One might suppose that Everettian quantum mechanics (EQM) is inhospitable to metaphysial indeterminacy (MI), given that, as A. Wilson (2020) puts it, "the central idea of EQM is to replace indeterminacy with multiplicity" (77). But as Wilson goes on to suggest, the popular decoherence-based understanding of EQM (henceforth: DEQM) appears to admit of indeterminacy in both world number and world nature, where the latter indeterminacy---our focus here---is plausibly metaphysical. After a brief presentation of DEQM (S1), we bolster the case for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The wave function as a true ensemble.Jonte Hance & Sabine Hossenfelder - 2022 - Proceedings of the Royal Society 478 (2262).
    In quantum mechanics, the wavefunction predicts probabilities of possible measurement outcomes, but not which individual outcome is realised in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Balloons on a String: A Critique of Multiverse Cosmology.Bruce Gordon - 2011 - In Bruce Gordon & William A. Dembski (eds.), The nature of nature: examining the role of naturalism in science. Wilmington, DE: ISI Books. pp. 558-601.
    Our examination of universal origins and fine-tuning will begin with a discussion of infl ationary scenarios grafted onto Big Bang cosmology and the proof that all infl ationary spacetimes are past-incomplete. After diverting into a lengthy critical examination of the “different physics” offered by quantum cosmologists at the past-boundary of the universe, we will proceed to dissect the inadequacies of infl ationary explanations and string-theoretic constructs in the context of three cosmological models that have received much attention: the Steinhardt-Turok cyclic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein, Nāgārjuna and relational quantum mechanics.Michael A. Peters - 2022 - Educational Philosophy and Theory 54 (12):1942-1951.
    My propositions serve as elucidations in this way: he who understands me eventually recognises them as nonsensical, when he has used them – as steps – to climb up over them. (He must, so to speak,...
    Download  
     
    Export citation  
     
    Bookmark  
  • One world is (probably) just as good as many.Jer Steeger - 2022 - Synthese 200 (97):1-32.
    One of our most sophisticated accounts of objective chance in quantum mechanics involves the Deutsch-Wallace theorem, which uses state-space symmetries to justify agents’ use of the Born rule when the quantum state is known. But Wallace argues that this theorem requires an Everettian approach to measurement. I find that this argument is unsound. I demonstrate a counter-example by applying the Deutsch-Wallace theorem to the de Broglie-Bohm pilot-wave theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Test submission.Jessica Wilson - forthcoming - In Firstname Lastname (ed.), Test Book. OUP.
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting the quantum mechanics of cosmology.David Wallace - forthcoming - In A. Ijjas & B. Loewer (eds.), Philosophy of Cosmology: an Introduction. Oxford University Press.
    Quantum theory plays an increasingly significant role in contemporary early-universe cosmology, most notably in the inflationary origins of the fluctuation spectrum of the microwave background radiation. I consider the two main strategies for interpreting standard quantum mechanics in the light of cosmology. I argue that the conceptual difficulties of the approaches based around an irreducible role for measurement - already very severe - become intolerable in a cosmological context, whereas the approach based around Everett's original idea of treating quantum systems (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Objectivity in Quantum Measurement.Sheng-Wen Li, C. Y. Cai, X. F. Liu & C. P. Sun - 2018 - Foundations of Physics 48 (6):654-667.
    The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists “objectively” since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ecstatic Language of Early Daoism: A Sufi Point of View.Esmaeil Radpour - 2015 - Transcendent Philosophy Journal 16:213-230.
    Various esoteric traditions apply different modes of expression for the same metaphysical truths. We may name the two most known esoteric languages as ecstatic and scholastic. Early Daoist use of reverse symbolism as for metaphysical truths and its critical way of viewing formalist understanding of traditional teachings, common virtues and popular beliefs show that it applies an ecstatic language, which, being called shaṭḥ in Sufi terminology, has a detailed literature and technical description in Sufism. This article tries, after a short (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • What is it like to be Schrodinger's cat?Peter J. Lewis - 2000 - Analysis 60 (1):22-29.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)A branching space-times view on quantum error correction.Thomas Müller - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):635-652.
    In this paper we describe some first steps for bringing the framework of branching space-times to bear on quantum information theory. Our main application is quantum error correction. It is shown that branching space-times offers a new perspective on quantum error correction: as a supplement to the orthodox slogan, ``fight entanglement with entanglement'', we offer the new slogan, ``fight indeterminism with indeterminism''.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Measurements according to Consistent Histories.Elias Okon & Daniel Sudarsky - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):7-12.
    We critically evaluate the treatment of the notion of measurement in the Consistent Histories approach to quantum mechanics. We find such a treatment unsatisfactory because it relies, often implicitly, on elements external to those provided by the formalism. In particular, we note that, in order for the formalism to be informative when dealing with measurement scenarios, one needs to assume that the appropriate choice of framework is such that apparatuses are always in states of well defined pointer positions after measurements. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Inference to the Best explanation.Peter Lipton - 2005 - In Martin Curd & Stathis Psillos (eds.), The Routledge Companion to Philosophy of Science. New York: Routledge. pp. 193.
    Science depends on judgments of the bearing of evidence on theory. Scientists must judge whether an observation or the result of an experiment supports, disconfirms, or is simply irrelevant to a given hypothesis. Similarly, scientists may judge that, given all the available evidence, a hypothesis ought to be accepted as correct or nearly so, rejected as false, or neither. Occasionally, these evidential judgments can be made on deductive grounds. If an experimental result strictly contradicts a hypothesis, then the truth of (...)
    Download  
     
    Export citation  
     
    Bookmark   306 citations  
  • On the Consistency of the Consistent Histories Approach to Quantum Mechanics.Elias Okon & Daniel Sudarsky - 2014 - Foundations of Physics 44 (1):19-33.
    The Consistent Histories (CH) formalism aims at a quantum mechanical framework which could be applied even to the universe as a whole. CH stresses the importance of histories for quantum mechanics, as opposed to measurements, and maintains that a satisfactory formulation of quantum mechanics allows one to assign probabilities to alternative histories of a quantum system. It further proposes that each realm, that is, each set of histories to which probabilities can be assigned, provides a valid quantum-mechanical account, but that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Distinguishing Initial State-Vectors from Each Other in Histories Formulations and the PBR Argument.Petros Wallden - 2013 - Foundations of Physics 43 (12):1502-1525.
    Following the argument of Pusey et al. (in Nature Phys. 8:476, 2012), new interest has been raised on whether one can interpret state-vectors (pure states) in a statistical way (ψ-epistemic theories), or if each one of them corresponds to a different ontological entity. Each interpretation of quantum theory assumes different ontology and one could ask if the PBR argument carries over. Here we examine this question for histories formulations in general with particular attention to the co-event formulation. State-vectors appear as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations