Switch to: Citations

Add references

You must login to add references.
  1. .Jeremy Butterfield & John Earman - 1977
    Download  
     
    Export citation  
     
    Bookmark   368 citations  
  • The fate of 'particles' in quantum field theories with interactions.Doreen Fraser - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):841-859.
    Most philosophical discussion of the particle concept that is afforded by quantum field theory has focused on free systems. This paper is devoted to a systematic investigation of whether the particle concept for free systems can be extended to interacting systems. The possible methods of accomplishing this are considered and all are found unsatisfactory. Therefore, an interacting system cannot be interpreted in terms of particles. As a consequence, quantum field theory does not support the inclusion of particles in our ontology. (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • No place for particles in relativistic quantum theories?Hans Halvorson & Rob Clifton - 2002 - Philosophy of Science 69 (1):1-28.
    David Malament (1996) has recently argued that there can be no relativistic quantum theory of (localizable) particles. We consider and rebut several objections that have been made against the soundness of Malament’s argument. We then consider some further objections that might be made against the generality of Malament’s conclusion, and we supply three no‐go theorems to counter these objections. Finally, we dispel potential worries about the counterintuitive nature of these results by showing that relativistic quantum field theory itself explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Local Primitive Causality and the Common Cause Principle in Quantum Field Theory.Miklos Redei & Stephen J. Summers - 2001 - Foundations of Physics 32 (3):335-355.
    If $\mathcal{A}$ (V) is a net of local von Neumann algebras satisfying standard axioms of algebraic relativistic quantum field theory and V 1 and V 2 are spacelike separated spacetime regions, then the system ( $\mathcal{A}$ (V 1 ), $\mathcal{A}$ (V 2 ), φ) is said to satisfy the Weak Reichenbach's Common Cause Principle iff for every pair of projections A∈ $\mathcal{A}$ (V 1 ), B∈ $\mathcal{A}$ (V 2 ) correlated in the normal state φ there exists a projection C (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Entanglement and Open Systems in Algebraic Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (1):1-31.
    Entanglement has long been the subject of discussion by philosophers of quantum theory, and has recently come to play an essential role for physicists in their development of quantum information theory. In this paper we show how the formalism of algebraic quantum field theory (AQFT) provides a rigorous framework within which to analyse entanglement in the context of a fully relativistic formulation of quantum theory. What emerges from the analysis are new practical and theoretical limitations on an experimenter's ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations