Switch to: Citations

References in:

Gödel on intuition and on Hilbert's finitism

In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: essays for his centennial. Ithaca, NY: Association for Symbolic Logic (2010)

Add references

You must login to add references.
  1. Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • (5 other versions)What is Cantor's Continuum Problem?Kurt Gödel - 1947 - The American Mathematical Monthly 54 (9):515--525.
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • From Kant to Hilbert: a source book in the foundations of mathematics.William Bragg Ewald (ed.) - 1996 - New York: Oxford University Press.
    This massive two-volume reference presents a comprehensive selection of the most important works on the foundations of mathematics. While the volumes include important forerunners like Berkeley, MacLaurin, and D'Alembert, as well as such followers as Hilbert and Bourbaki, their emphasis is on the mathematical and philosophical developments of the nineteenth century. Besides reproducing reliable English translations of classics works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare, William Ewald also includes selections from Gauss, Cantor, Kronecker, and Zermelo, all translated here for (...)
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Kant and the exact sciences.Michael Friedman - 1992 - Cambridge: Harvard University Press.
    In this new book, Michael Friedman argues that Kant's continuing efforts to find a metaphysics that could provide a foundation for the sciences is of the utmost ...
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • (1 other version)Platonism and mathematical intuition in Kurt gödel's thought.Charles Parsons - 1995 - Bulletin of Symbolic Logic 1 (1):44-74.
    The best known and most widely discussed aspect of Kurt Gödel's philosophy of mathematics is undoubtedly his robust realism or platonism about mathematical objects and mathematical knowledge. This has scandalized many philosophers but probably has done so less in recent years than earlier. Bertrand Russell's report in his autobiography of one or more encounters with Gödel is well known:Gödel turned out to be an unadulterated Platonist, and apparently believed that an eternal “not” was laid up in heaven, where virtuous logicians (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)From Brouwer to Hilbert: the debate on the foundations of mathematics in the 1920s.Paolo Mancosu (ed.) - 1998 - New York: Oxford University Press.
    From Brouwer To Hilbert: The Debate on the Foundations of Mathematics in the 1920s offers the first comprehensive introduction to the most exciting period in the foundation of mathematics in the twentieth century. The 1920s witnessed the seminal foundational work of Hilbert and Bernays in proof theory, Brouwer's refinement of intuitionistic mathematics, and Weyl's predicativist approach to the foundations of analysis. This impressive collection makes available the first English translations of twenty-five central articles by these important contributors and many others. (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • (1 other version)Hilbert's programme.Georg Kreisel - 1958 - Dialectica 12 (3‐4):346-372.
    Hilbert's plan for understanding the concept of infinity required the elimination of non‐finitist machinery from proofs of finitist assertions. The failure of the original plan leads to a hierarchy of progressively less elementary, but still constructive methods instead of finitist ones . A mathematical proof of this failure requires a definition of « finitist ».—The paper sketches the three principal methods for the syntactic analysis of non‐constructive mathematics, the resulting consistency proofs and constructive interpretations, modelled on Herbrand's theorem, and their (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (5 other versions)What is Cantor's Continuum Problem?Kurt Gödel - 1983 - In Paul Benacerraf & Hilary Putnam (eds.), Philosophy of Mathematics: Selected Readings (2nd Edition). Cambridge University Press. pp. 470-485.
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and its History.William Walker Tait - 2004 - Oxford, England: Oup Usa.
    William Tait is one of the most distinguished philosophers of mathematics of the last fifty years. This volume collects his most important published philosophical papers from the 1980's to the present. The articles cover a wide range of issues in the foundations and philosophy of mathematics, including some on historical figures ranging from Plato to Gdel.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program.Richard Zach - 2003 - Synthese 137 (1-2):211 - 259.
    After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Finitism and intuitive knowledge.Charles Parsons - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 249--270.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Abhandlungen zur Philosophie der Mathematik.G. T. Kneebone & Paul Bernays - 1977 - Philosophical Quarterly 27 (106):72.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Godel's interpretation of intuitionism.William Tait - 2006 - Philosophia Mathematica 14 (2):208-228.
    Gödel regarded the Dialectica interpretation as giving constructive content to intuitionism, which otherwise failed to meet reasonable conditions of constructivity. He founded his theory of primitive recursive functions, in which the interpretation is given, on the concept of computable function of finite type. I will (1) criticize this foundation, (2) propose a quite different one, and (3) note that essentially the latter foundation also underlies the Curry-Howard type theory, and hence Heyting's intuitionistic conception of logic. Thus the Dialectica interpretation (in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations