Switch to: References

Citations of:

Finitism and intuitive knowledge

In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 249--270 (1998)

Add citations

You must login to add citations.
  1. Hilbert izlencesinin izinde adcılık adına yeni bulgular.Besim Karakadılar - manuscript
    Hilbert izlencesinin kanıt kuramsal amacı tarihsel gelişimi içinde özetlendikten sonra arka plandaki model-kuramsal motivasyonu belirtilmektedir. Hilbert'in nihai hedefinin matematiğin temellerine ilişkin tüm epistemolojik ve ontolojik varsayımlardan arındırılmış bir matematik kuramı geliştirmek olduğu savunulmaktadır. Yakın geçmişte mantıktaki bazı gelişmelerin Hilbert izlencesinin yalnızca adcı varsayımlar temelinde sürdürülebileceğine ilişkin yeni bir bakış açısı sağladığı öne sürülmektedir.
    Download  
     
    Export citation  
     
    Bookmark  
  • On what Hilbert aimed at in the foundations.Besim Karakadılar - manuscript
    Hilbert's axiomatic approach was an optimistic take over on the side of the logical foundations. It was also a response to various restrictive views of mathematics supposedly bounded by the reaches of epistemic elements in mathematics. A complete axiomatization should be able to exclude epistemic or ontic elements from mathematical theorizing, according to Hilbert. This exclusion is not necessarily a logicism in similar form to Frege's or Dedekind's projects. That is, intuition can still have a role in mathematical reasoning. Nevertheless, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • William Tait. The provenance of pure reason. Essays on the philosophy of mathematics and on its history.Charles Parsons - 2009 - Philosophia Mathematica 17 (2):220-247.
    William Tait's standing in the philosophy of mathematics hardly needs to be argued for; for this reason the appearance of this collection is especially welcome. As noted in his Preface, the essays in this book ‘span the years 1981–2002’. The years given are evidently those of publication. One essay was not previously published in its present form, but it is a reworking of papers published during that period. The Introduction, one appendix, and some notes are new. Many of the essays (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Gödel on intuition and on Hilbert's finitism.W. W. Tait - 2010 - In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: essays for his centennial. Ithaca, NY: Association for Symbolic Logic.
    There are some puzzles about G¨ odel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the contrary, G¨ odel’s writings represent a smooth evolution, with just one rather small double-reversal, of his view of finitism. He used the term “finit” (in German) or “finitary” or “finitistic” primarily to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Hilbert between the formal and the informal side of mathematics.Giorgio Venturi - 2015 - Manuscrito 38 (2):5-38.
    : In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How to be a structuralist all the way down.Elaine Landry - 2011 - Synthese 179 (3):435 - 454.
    This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the "algebraic" approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a "foundation", (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Reconstructing Hilbert to construct category theoretic structuralism.Elaine Landry - unknown
    This paper considers the nature and role of axioms from the point of view of the current debates about the status of category theory and, in particular, in relation to the “algebraic” approach to mathematical structuralism. My aim is to show that category theory has as much to say about an algebraic consideration of meta-mathematical analyses of logical structure as it does about mathematical analyses of mathematical structure, without either requiring an assertory mathematical or meta-mathematical background theory as a “foundation”, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Unfolding finitist arithmetic.Solomon Feferman & Thomas Strahm - 2010 - Review of Symbolic Logic 3 (4):665-689.
    The concept of the (full) unfolding of a schematic system is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted ? The program to determine for various systems of foundational significance was previously carried out for a system of nonfinitist arithmetic, ; it was shown that is proof-theoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reason and intuition.Charles Parsons - 2000 - Synthese 125 (3):299-315.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Is There a “Hilbert Thesis”?Reinhard Kahle - 2019 - Studia Logica 107 (1):145-165.
    In his introductory paper to first-order logic, Jon Barwise writes in the Handbook of Mathematical Logic :[T]he informal notion of provable used in mathematics is made precise by the formal notion provable in first-order logic. Following a sug[g]estion of Martin Davis, we refer to this view as Hilbert’s Thesis.This paper reviews the discussion of Hilbert’s Thesis in the literature. In addition to the question whether it is justifiable to use Hilbert’s name here, the arguments for this thesis are compared with (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Hypatia's silence.Martin Fischer, Leon Horsten & Carlo Nicolai - 2021 - Noûs 55 (1):62-85.
    Hartry Field distinguished two concepts of type‐free truth: scientific truth and disquotational truth. We argue that scientific type‐free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non‐classical logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Critical study of Michael Potter’s Reason’s Nearest Kin. [REVIEW]Richard Zach - 2005 - Notre Dame Journal of Formal Logic 46 (4):503-513.
    Critical study of Michael Potter, Reason's Nearest Kin. Philosophies of Arithmetic from Kant to Carnap. Oxford University Press, Oxford, 2000. x + 305 pages.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two (or three) notions of finitism.Mihai Ganea - 2010 - Review of Symbolic Logic 3 (1):119-144.
    Finitism is given an interpretation based on two ideas about strings (sequences of symbols): a replacement principle extracted from Hilberts class 2 can be justified by means of an additional finitistic choice principle, thus obtaining a second equational theory . It is unknown whether is strictly stronger than since 2 may coincide with the class of lower elementary functions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program.Richard Zach - 2003 - Synthese 137 (1-2):211 - 259.
    After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Different senses of finitude: An inquiry into Hilbert’s finitism.Sören Stenlund - 2012 - Synthese 185 (3):335-363.
    This article develops a critical investigation of the epistemological core of Hilbert's foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of 'number' and 'finitude' that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Extensions of the Finitist Point of View.Matthias Schirn & Karl-Georg Niebergall - 2001 - History and Philosophy of Logic 22 (3):135-161.
    Hilbert developed his famous finitist point of view in several essays in the 1920s. In this paper, we discuss various extensions of it, with particular emphasis on those suggested by Hilbert and Bernays in Grundlagen der Mathematik (vol. I 1934, vol. II 1939). The paper is in three sections. The first deals with Hilbert's introduction of a restricted ? -rule in his 1931 paper ?Die Grundlegung der elementaren Zahlenlehre?. The main question we discuss here is whether the finitist (meta-)mathematician would (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations