Switch to: Citations

Add references

You must login to add references.
  1. Model uncertainty and policy choice: A plea for integrated subjectivism.Alistair M. C. Isaac - 2014 - Studies in History and Philosophy of Science Part A 47:42-50.
    A question at the intersection of scientific modeling and public choice is how to deal with uncertainty about model predictions. This "high-level" uncertainty is necessarily value-laden, and thus must be treated as irreducibly subjective. Nevertheless, formal methods of uncertainty analysis should still be employed for the purpose of clarifying policy debates. I argue that such debates are best informed by models which integrate objective features with subjective ones. This integrated subjectivism is illustrated with a case study from the literature on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Experimental Modeling in Biology: In Vivo Representation and Stand-ins As Modeling Strategies.Marcel Weber - 2014 - Philosophy of Science 81 (5):756-769.
    Experimental modeling in biology involves the use of living organisms (not necessarily so-called "model organisms") in order to model or simulate biological processes. I argue here that experimental modeling is a bona fide form of scientific modeling that plays an epistemic role that is distinct from that of ordinary biological experiments. What distinguishes them from ordinary experiments is that they use what I call "in vivo representations" where one kind of causal process is used to stand in for a physically (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Credibility, Idealisation, and Model Building: An Inferential Approach.Xavier De Donato Rodriguez & Jesus Zamora Bonilla - 2009 - Erkenntnis 70 (1):101-118.
    In this article we defend the inferential view of scientific models and idealisation. Models are seen as “inferential prostheses” (instruments for surrogative reasoning) construed by means of an idealisation-concretisation process, which we essentially understand as a kind of counterfactual deformation procedure (also analysed in inferential terms). The value of scientific representation is understood in terms not only of the success of the inferential outcomes arrived at with its help, but also of the heuristic power of representation and their capacity to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abstraction and the Organization of Mechanisms.Arnon Levy & William Bechtel - 2013 - Philosophy of Science 80 (2):241-261.
    Proponents of mechanistic explanation all acknowledge the importance of organization. But they have also tended to emphasize specificity with respect to parts and operations in mechanisms. We argue that in understanding one important mode of organization—patterns of causal connectivity—a successful explanatory strategy abstracts from the specifics of the mechanism and invokes tools such as those of graph theory to explain how mechanisms with a particular mode of connectivity will behave. We discuss the connection between organization, abstraction, and mechanistic explanation and (...)
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • Playing with molecules.Adam Toon - 2011 - Studies in History and Philosophy of Science Part A 42 (4):580-589.
    Recent philosophy of science has seen a number of attempts to understand scientific models by looking to theories of fiction. In previous work, I have offered an account of models that draws on Kendall Walton’s ‘make-believe’ theory of art. According to this account, models function as ‘props’ in games of make-believe, like children’s dolls or toy trucks. In this paper, I assess the make-believe view through an empirical study of molecular models. I suggest that the view gains support when we (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Righteous modeling: the competence of classical population genetics. [REVIEW]Peter Gildenhuys - 2011 - Biology and Philosophy 26 (6):813-835.
    In a recent article, “Wayward Modeling: Population Genetics and Natural Selection,” Bruce Glymour claims that population genetics is burdened by serious predictive and explanatory inadequacies and that the theory itself is to blame. Because Glymour overlooks a variety of formal modeling techniques in population genetics, his arguments do not quite undermine a major scientific theory. However, his arguments are extremely valuable as they provide definitive proof that those who would deploy classical population genetics over natural systems must do so with (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Economic Modelling as Robustness Analysis.Jaakko Kuorikoski, Aki Lehtinen & Caterina Marchionni - 2010 - British Journal for the Philosophy of Science 61 (3):541-567.
    We claim that the process of theoretical model refinement in economics is best characterised as robustness analysis: the systematic examination of the robustness of modelling results with respect to particular modelling assumptions. We argue that this practise has epistemic value by extending William Wimsatt's account of robustness analysis as triangulation via independent means of determination. For economists robustness analysis is a crucial methodological strategy because their models are often based on idealisations and abstractions, and it is usually difficult to tell (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • How scientific models can explain.Alisa Bokulich - 2011 - Synthese 180 (1):33 - 45.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the (...)
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • (1 other version)Abstraction via generic modeling in concept formation in science.Nancy J. Nersessian - 2005 - Poznan Studies in the Philosophy of the Sciences and the Humanities 86 (1):117-144.
    Cases where analogy has played a significant role in the formation of a new scientific concept are well-documented. Yet, how is it that genuinely new representations can be constructed from existing representations? It is argued that the process of ‘generic modeling’ enables abstraction of features common to both the domain of the source of the analogy and of the target phenomena. The analysis focuses on James Clerk Maxwell's construction of the electromagnetic field concept. The mathematical representation Maxwell constructed turned out (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Nature's capacities and their measurement.Nancy Cartwright - 1989 - New York: Oxford University Press.
    Ever since David Hume, empiricists have barred powers and capacities from nature. In this book Cartwright argues that capacities are essential in our scientific world, and, contrary to empiricist orthodoxy, that they can meet sufficiently strict demands for testability. Econometrics is one discipline where probabilities are used to measure causal capacities, and the technology of modern physics provides several examples of testing capacities (such as lasers). Cartwright concludes by applying the lessons of the book about capacities and probabilities to the (...)
    Download  
     
    Export citation  
     
    Bookmark   631 citations  
  • (1 other version)Using false models to elaborate constraints on processes: Blending inheritance in organic and cultural evolution.William C. Wimsatt - 2002 - Proceedings of the Philosophy of Science Association 2002 (S3):S12-S24.
    Scientific models may be more useful for false assumptions they make than true ones when one is interested not in the fit of the model, but in the form of the residuals. Modeling Darwin’s “blending” theory of inheritance shows how it illuminates features of Mendelian theory. Insufficient understanding of it leads to incorrect moves in modeling population structure. But it may prove even more useful for organizing a theory of cultural evolution. Analysis of “blending” inheritance gives new tools for recognizing (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • An agent-based conception of models and scientific representation.Ronald N. Giere - 2010 - Synthese 172 (2):269–281.
    I argue for an intentional conception of representation in science that requires bringing scientific agents and their intentions into the picture. So the formula is: Agents (1) intend; (2) to use model, M; (3) to represent a part of the world, W; (4) for some purpose, P. This conception legitimates using similarity as the basic relationship between models and the world. Moreover, since just about anything can be used to represent anything else, there can be no unified ontology of models. (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Model, theory, and evidence in the discovery of the DNA structure.Samuel Schindler - 2008 - British Journal for the Philosophy of Science 59 (4):619-658.
    In this paper, I discuss the discovery of the DNA structure by Francis Crick and James Watson, which has provoked a large historical literature but has yet not found entry into philosophical debates. I want to redress this imbalance. In contrast to the available historical literature, a strong emphasis will be placed upon analysing the roles played by theory, model, and evidence and the relationship between them. In particular, I am going to discuss not only Crick and Watson's well-known model (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Performing abstraction: Two ways of modelling arabidopsis thaliana.Sabina Leonelli - 2008 - Biology and Philosophy 23 (4):509-528.
    What is the best way to analyse abstraction in scientific modelling? I propose to focus on abstracting as an epistemic activity, which is achieved in different ways and for different purposes depending on the actual circumstances of modelling and the features of the models in question. This is in contrast to a more conventional use of the term ‘abstract’ as an attribute of models, which I characterise as black-boxing the ways in which abstraction is performed and to which epistemological advantage. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Fiction As a Vehicle for Truth: Moving Beyond the Ontic Conception.Alisa Bokulich - 2016 - The Monist 99 (3):260-279.
    Despite widespread evidence that fictional models play an explanatory role in science, resistance remains to the idea that fictions can explain. A central source of this resistance is a particular view about what explanations are, namely, the ontic conception of explanation. According to the ontic conception, explanations just are the concrete entities in the world. I argue this conception is ultimately incoherent and that even a weaker version of the ontic conception fails. Fictional models can succeed in offering genuine explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Simplified models: a different perspective on models as mediators.C. D. McCoy & Michela Massimi - 2018 - European Journal for Philosophy of Science 8 (1):99-123.
    We introduce a novel point of view on the “models as mediators” framework in order to emphasize certain important epistemological questions about models in science which have so far been little investigated. To illustrate how this perspective can help answer these kinds of questions, we explore the use of simplified models in high energy physics research beyond the Standard Model. We show in detail how the construction of simplified models is grounded in the need to mitigate pressing epistemic problems concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Credibility, Idealisation, and Model Building: An Inferential Approach.Xavier Donato Rodríguez & Jesús Zamora Bonilla - 2009 - Erkenntnis 70 (1):101-118.
    In this article we defend the inferential view of scientific models and idealisation. Models are seen as “inferential prostheses” (instruments for surrogative reasoning) construed by means of an idealisation-concretisation process, which we essentially understand as a kind of counterfactual deformation procedure (also analysed in inferential terms). The value of scientific representation is understood in terms not only of the success of the inferential outcomes arrived at with its help, but also of the heuristic power of representation and their capacity to (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Mechanistic Explanation in Systems Biology: Cellular Networks.Dana Matthiessen - 2017 - British Journal for the Philosophy of Science 68 (1):1-25.
    It is argued that once biological systems reach a certain level of complexity, mechanistic explanations provide an inadequate account of many relevant phenomena. In this article, I evaluate such claims with respect to a representative programme in systems biological research: the study of regulatory networks within single-celled organisms. I argue that these networks are amenable to mechanistic philosophy without need to appeal to some alternate form of explanation. In particular, I claim that we can understand the mathematical modelling techniques of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Idealization and modeling.Robert W. Batterman - 2009 - Synthese 169 (3):427-446.
    This paper examines the role of mathematical idealization in describing and explaining various features of the world. It examines two cases: first, briefly, the modeling of shock formation using the idealization of the continuum. Second, and in more detail, the breaking of droplets from the points of view of both analytic fluid mechanics and molecular dynamical simulations at the nano-level. It argues that the continuum idealizations are explanatorily ineliminable and that a full understanding of certain physical phenomena cannot be obtained (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Generative models: Human embryonic stem cells and multiple modeling relations.Melinda Bonnie Fagan - 2016 - Studies in History and Philosophy of Science Part A 56:122-134.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Who is a Modeler?Michael Weisberg - 2007 - British Journal for the Philosophy of Science 58 (2):207-233.
    Many standard philosophical accounts of scientific practice fail to distinguish between modeling and other types of theory construction. This failure is unfortunate because there are important contrasts among the goals, procedures, and representations employed by modelers and other kinds of theorists. We can see some of these differences intuitively when we reflect on the methods of theorists such as Vito Volterra and Linus Pauling on the one hand, and Charles Darwin and Dimitri Mendeleev on the other. Much of Volterra's and (...)
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (1 other version)One phenomenon, many models: Inconsistency and complementarity.Margaret Morrison - 2011 - Studies in History and Philosophy of Science Part A 42 (2):342-351.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The Explanatory Role of Abstraction Processes in Models: the Case of Aggregations.Sergio A. Gallegos - 2016 - Studies in History and Philosophy of Science Part A 56:161-167.
    Though it is held that some models in science have explanatory value, there is no conclusive agreement on what provides them with this value. One common view is that models have explanatory value vis-à-vis some target systems because they are developed using an abstraction process. Though I think this is correct, I believe it is not the whole picture. In this paper, I argue that, in addition to the well-known process of abstraction understood as an omission of features or information, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The World in the Model: How Economists Work and Think.Mary S. Morgan - 2012 - Cambridge University Press: Cambridge.
    During the last two centuries, the way economic science is done has changed radically: it has become a social science based on mathematical models in place of words. This book describes and analyses that change - both historically and philosophically - using a series of case studies to illuminate the nature and the implications of these changes. It is not a technical book; it is written for the intelligent person who wants to understand how economics works from the inside out. (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Reconstructing Reality: Models, Mathematics, and Simulations.Margaret Morrison - 2014 - New York, US: Oup Usa.
    The book examines issues related to the way modeling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Explanation, understanding, and unrealistic models.Frank Hindriks - 2013 - Studies in History and Philosophy of Science Part A 44 (3):523-531.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Epistemic Groundings of Abstraction and Their Cognitive Dimension.Sergio F. Martínez & Xiang Huang - 2011 - Philosophy of Science 78 (3):490-511.
    In the philosophy of science, abstraction has usually been analyzed in terms of the interface between our experience and the design of our concepts. The often implicit assumption here is that such interface has a definite identifiable and universalizable structure, determining the epistemic correctness of any abstraction. Our claim is that, on the contrary, the epistemic grounding of abstraction should not be reduced to the structural norms of such interface but is also related to the constraints on the cognitive processes (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • Waddington redux: models and explanation in stem cell and systems biology.Melinda Bonnie Fagan - 2012 - Biology and Philosophy 27 (2):179-213.
    Stem cell biology and systems biology are two prominent new approaches to studying cell development. In stem cell biology, the predominant method is experimental manipulation of concrete cells and tissues. Systems biology, in contrast, emphasizes mathematical modeling of cellular systems. For scientists and philosophers interested in development, an important question arises: how should the two approaches relate? This essay proposes an answer, using the model of Waddington’s landscape to triangulate between stem cell and systems approaches. This simple abstract model represents (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)One phenomenon, many models: Inconsistency and complementarity.Margaret Morrison - 2011 - Studies in History and Philosophy of Science Part A 42 (2):342-351.
    The paper examines philosophical issues that arise in contexts where one has many different models for treating the same system. I show why in some cases this appears relatively unproblematic (models of turbulence) while others represent genuine difficulties when attempting to interpret the information that models provide (nuclear models). What the examples show is that while complementary models needn’t be a hindrance to knowledge acquisition, the kind of inconsistency present in nuclear cases is, since it is indicative of a lack (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Models in Science (2nd edition).Roman Frigg & Stephan Hartmann - 2021 - The Stanford Encyclopedia of Philosophy.
    Models are of central importance in many scientific contexts. The centrality of models such as inflationary models in cosmology, general-circulation models of the global climate, the double-helix model of DNA, evolutionary models in biology, agent-based models in the social sciences, and general-equilibrium models of markets in their respective domains is a case in point (the Other Internet Resources section at the end of this entry contains links to online resources that discuss these models). Scientists spend significant amounts of time building, (...)
    Download  
     
    Export citation  
     
    Bookmark   235 citations  
  • Where have all the theories gone?Margaret Morrison - 2007 - Philosophy of Science 74 (2):195-228.
    Although the recent emphasis on models in philosophy of science has been an important development, the consequence has been a shift away from more traditional notions of theory. Because the semantic view defines theories as families of models and because much of the literature on “scientific” modeling has emphasized various degrees of independence from theory, little attention has been paid to the role that theory has in articulating scientific knowledge. This paper is the beginning of what I hope will be (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Strategies of abstraction.Richard Levins - 2006 - Biology and Philosophy 21 (5):741-755.
    Abstraction is seen as an active process which both enlightens and obscures. Abstractions are not true or false but relatively enlightening or obscuring according to the problem under study; different abstractions may grasp different aspects of a problem. Abstractions may be useless if they can answer questions only about themselves. A theoretical enterprise explores reality through acluster of abstractions that use different perspectives, temporal and horizontal scales, and assumes different givens.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Idealization and abstraction: A framework.Martin R. Jones - 2005 - Poznan Studies in the Philosophy of the Sciences and the Humanities 86 (1):173-218.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • The explanatory role of abstraction processes in models: The case of aggregations.Sergio Armando Gallegos Ordorica - 2016 - Studies in History and Philosophy of Science Part A 56:161-167.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mutant mice: Experimental organisms as materialised models in biomedicine.Lara Huber & Lara K. Keuck - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):385-391.
    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models—acknowledging their status as living beings and as epistemological tools—necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The undeniable effectiveness of mathematics in the special sciences.Mark Colyvan - unknown
    In many of the special sciences, mathematical models are used to provide information about specified target systems. For instance, population models are used in ecology to make predictions about the abundance of real populations of particular organisms. The status of mathematical models, though, is unclear and their use is hotly contested by some practitioners. A common objection levelled against the use of these models is that they ignore all the known, causally-relevant details of the often complex target systems. Indeed, the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Using False Models to Elaborate Constraints on Processes: Blending Inheritance in Organic and Cultural Evolution.William C. Wimsatt - 2002 - Philosophy of Science 69 (S3):S12-S24.
    Scientific models may be more useful for false assumptions they make than true ones when one is interested not in the fit of the model, but in the form of the residuals. Modeling Darwin's “blending” theory of inheritance shows how it illuminates features of Mendelian theory. Insufficient understanding of it leads to incorrect moves in modeling population structure. But it may prove even more useful for organizing a theory of cultural evolution. Analysis of “blending” inheritance gives new tools for recognizing (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations