Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Some theorems about the sentential calculi of Lewis and Heyting.J. C. C. McKinsey & Alfred Tarski - 1948 - Journal of Symbolic Logic 13 (1):1-15.
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
  • Proof Analysis in Modal Logic.Sara Negri - 2005 - Journal of Philosophical Logic 34 (5-6):507-544.
    A general method for generating contraction- and cut-free sequent calculi for a large family of normal modal logics is presented. The method covers all modal logics characterized by Kripke frames determined by universal or geometric properties and it can be extended to treat also Gödel-Löb provability logic. The calculi provide direct decision methods through terminating proof search. Syntactic proofs of modal undefinability results are obtained in the form of conservativity theorems.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Cut Elimination in the Presence of Axioms.Sara Negri & Jan Von Plato - 1998 - Bulletin of Symbolic Logic 4 (4):418-435.
    A way is found to add axioms to sequent calculi that maintains the eliminability of cut, through the representation of axioms as rules of inference of a suitable form. By this method, the structural analysis of proofs is extended from pure logic to free-variable theories, covering all classical theories, and a wide class of constructive theories. All results are proved for systems in which also the rules of weakening and contraction can be eliminated. Applications include a system of predicate logic (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Proof analysis in intermediate logics.Roy Dyckhoff & Sara Negri - 2012 - Archive for Mathematical Logic 51 (1):71-92.
    Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the Gödel–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Glivenko sequent classes and constructive cut elimination in geometric logics.Giulio Fellin, Sara Negri & Eugenio Orlandelli - 2023 - Archive for Mathematical Logic 62 (5):657-688.
    A constructivisation of the cut-elimination proof for sequent calculi for classical, intuitionistic and minimal infinitary logics with geometric rules—given in earlier work by the second author—is presented. This is achieved through a procedure where the non-constructive transfinite induction on the commutative sum of ordinals is replaced by two instances of Brouwer’s Bar Induction. The proof of admissibility of the structural rules is made ordinal-free by introducing a new well-founded relation based on a notion of embeddability of derivations. Additionally, conservativity for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Geometric Rules in Infinitary Logic.Sara Negri - 2021 - In Ofer Arieli & Anna Zamansky (eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical Logics. Springer Verlag. pp. 265-293.
    Large portions of mathematics such as algebra and geometry can be formalized using first-order axiomatizations. In many cases it is even possible to use a very well-behaved class of first-order axioms, namely, what are called coherent or geometric implications. Such class of axioms can be translated to inference rules that can be added to a sequent calculus while preserving its structural properties. In this work, this fundamental result is extended to their infinitary generalizations as extensions of sequent calculi for both (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Neighborhood Semantics for Basic and Intuitionistic Logic.Morteza Moniri & Fatemeh Shirmohammadzadeh Maleki - 2015 - Logic and Logical Philosophy 24 (3).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Infinitary intuitionistic logic from a classical point of view.Mark E. Nadel - 1978 - Annals of Mathematical Logic 14 (2):159-191.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Infinitary propositional intuitionistic logic.Craig Kalicki - 1980 - Notre Dame Journal of Formal Logic 21 (2):216-228.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From axioms to synthetic inference rules via focusing.Sonia Marin, Dale Miller, Elaine Pimentel & Marco Volpe - 2022 - Annals of Pure and Applied Logic 173 (5):103091.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Glivenko sequent classes in the light of structural proof theory.Sara Negri - 2016 - Archive for Mathematical Logic 55 (3-4):461-473.
    In 1968, Orevkov presented proofs of conservativity of classical over intuitionistic and minimal predicate logic with equality for seven classes of sequents, what are known as Glivenko classes. The proofs of these results, important in the literature on the constructive content of classical theories, have remained somehow cryptic. In this paper, direct proofs for more general extensions are given for each class by exploiting the structural properties of G3 sequent calculi; for five of the seven classes the results are strengthened (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Remarks on Barr’s Theorem: Proofs in Geometric Theories.Michael Rathjen - 2016 - In Peter Schuster & Dieter Probst (eds.), Concepts of Proof in Mathematics, Philosophy, and Computer Science. Boston: De Gruyter. pp. 347-374.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinitary intuitionistic logic from a classical point of view.M. E. Nadel - 1978 - Annals of Mathematical Logic 14 (2):159.
    Download  
     
    Export citation  
     
    Bookmark   11 citations