Switch to: References

Add citations

You must login to add citations.
  1. On Combining Intuitionistic and S4 Modal Logic.João Rasga & Cristina Sernadas - 2024 - Bulletin of the Section of Logic 53 (3):321-344.
    We address the problem of combining intuitionistic and S4 modal logic in a non-collapsing way inspired by the recent works in combining intuitionistic and classical logic. The combined language includes the shared constructors of both logics namely conjunction, disjunction and falsum as well as the intuitionistic implication, the classical implication and the necessity modality. We present a Gentzen calculus for the combined logic defined over a Gentzen calculus for the host S4 modal logic. The semantics is provided by Kripke structures. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Orthologic of Epistemic Modals.Wesley H. Holliday & Matthew Mandelkern - 2024 - Journal of Philosophical Logic 53 (4):831-907.
    Epistemic modals have peculiar logical features that are challenging to account for in a broadly classical framework. For instance, while a sentence of the form $$p\wedge \Diamond \lnot p$$ (‘p, but it might be that not p’) appears to be a contradiction, $$\Diamond \lnot p$$ does not entail $$\lnot p$$, which would follow in classical logic. Likewise, the classical laws of distributivity and disjunctive syllogism fail for epistemic modals. Existing attempts to account for these facts generally either under- or over-correct. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Model Theory of Topology.Paolo Lipparini - forthcoming - Studia Logica:1-35.
    An algebraization of the notion of topology has been proposed more than 70 years ago in a classical paper by McKinsey and Tarski, leading to an area of research still active today, with connections to algebra, geometry, logic and many applications, in particular, to modal logics. In McKinsey and Tarski’s setting the model theoretical notion of homomorphism does not correspond to the notion of continuity. We notice that the two notions correspond if instead we consider a preorder relation \( \sqsubseteq (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conservative Translations Revisited.J. Ramos, J. Rasga & C. Sernadas - 2023 - Journal of Philosophical Logic 52 (3):889-913.
    We provide sufficient conditions for the existence of a conservative translation from a consequence system to another one. We analyze the problem in many settings, namely when the consequence systems are generated by a deductive calculus or by a logic system including both proof-theoretic and model-theoretic components. We also discuss reflection of several metaproperties with the objective of showing that conservative translations provide an alternative to proving such properties from scratch. We discuss soundness and completeness, disjunction property and metatheorem of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ideological innocence.Daniel Rubio - 2022 - Synthese 200 (5):1-22.
    Quine taught us the difference between a theory’s ontology and its ideology. Ontology is the things a theory’s quantifiers must range over if it is true, Ideology is the primitive concepts that must be used to state the theory. This allows us to split the theoretical virtue of parsimony into two kinds: ontological parsimony and ideological parsimony. My goal is help illuminate the virtue of ideological parsimony by giving a criterion for ideological innocence—a rule for when additional ideology does not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionism and the Modal Logic of Vagueness.Susanne Bobzien & Ian Rumfitt - 2020 - Journal of Philosophical Logic 49 (2):221-248.
    Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any advantages when dealing with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On an Intuitionistic Logic for Pragmatics.Gianluigi Bellin, Massimiliano Carrara & Daniele Chiffi - 2018 - Journal of Logic and Computation 50 (28):935–966..
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justi cations and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Lattice logic as a fragment of (2-sorted) residuated modal logic.Chrysafis Hartonas - 2019 - Journal of Applied Non-Classical Logics 29 (2):152-170.
    ABSTRACTCorrespondence and Shalqvist theories for Modal Logics rely on the simple observation that a relational structure is at the same time the basis for a model of modal logic and for a model of first-order logic with a binary predicate for the accessibility relation. If the underlying set of the frame is split into two components,, and, then frames are at the same time the basis for models of non-distributive lattice logic and of two-sorted, residuated modal logic. This suggests that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Restricted Extensions of Implicational Calculi.Biswambhar Pahi - 1971 - Mathematical Logic Quarterly 17 (1):11-16.
    Download  
     
    Export citation  
     
    Bookmark  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A pragmatic interpretation of intuitionistic propositional logic.Carlo Dalla Pozza & Claudio Garola - 1995 - Erkenntnis 43 (1):81-109.
    We construct an extension P of the standard language of classical propositional logic by adjoining to the alphabet of a new category of logical-pragmatic signs. The well formed formulas of are calledradical formulas (rfs) of P;rfs preceded by theassertion sign constituteelementary assertive formulas of P, which can be connected together by means of thepragmatic connectives N, K, A, C, E, so as to obtain the set of all theassertive formulas (afs). Everyrf of P is endowed with atruth value defined classically, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Intermediate logics and factors of the Medvedev lattice.Andrea Sorbi & Sebastiaan A. Terwijn - 2008 - Annals of Pure and Applied Logic 155 (2):69-85.
    We investigate the initial segments of the Medvedev lattice as Brouwer algebras, and study the propositional logics connected to them.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A modal theorem-preserving translation of a class of three-valued logics of incomplete information.D. Ciucci & D. Dubois - 2013 - Journal of Applied Non-Classical Logics 23 (4):321-352.
    There are several three-valued logical systems that form a scattered landscape, even if all reasonable connectives in three-valued logics can be derived from a few of them. Most papers on this subject neglect the issue of the relevance of such logics in relation with the intended meaning of the third truth-value. Here, we focus on the case where the third truth-value means unknown, as suggested by Kleene. Under such an understanding, we show that any truth-qualified formula in a large range (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extensions of Priest-da Costa Logic.Thomas Macaulay Ferguson - 2014 - Studia Logica 102 (1):145-174.
    In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic is examined and employed to pinpoint (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fatal Heyting Algebras and Forcing Persistent Sentences.Leo Esakia & Benedikt Löwe - 2012 - Studia Logica 100 (1-2):163-173.
    Hamkins and Löwe proved that the modal logic of forcing is S4.2 . In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra H ZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Embedding Theorem: Its Further Developments and Consequences. Part 1.Alexei Y. Muravitsky - 2006 - Notre Dame Journal of Formal Logic 47 (4):525-540.
    We outline the Gödel-McKinsey-Tarski Theorem on embedding of Intuitionistic Propositional Logic Int into modal logic S4 and further developments which led to the Generalized Embedding Theorem. The latter in turn opened a full-scale comparative exploration of lattices of the (normal) extensions of modal propositional logic S4, provability logic GL, proof-intuitionistic logic KM, and others, including Int. The present paper is a contribution to this part of the research originated from the Gödel-McKinsey-Tarski Theorem. In particular, we show that the lattice ExtInt (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable.Valentin Shehtman - 1990 - Studia Logica 49 (3):365 - 385.
    We consider modal logics whose intermediate fragments lie between the logic of infinite problems [20] and the Medvedev logic of finite problems [15]. There is continuum of such logics [19]. We prove that none of them is finitely axiomatizable. The proof is based on methods from [12] and makes use of some graph-theoretic constructions (operations on coverings, and colourings).
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hedges: A study in meaning criteria and the logic of fuzzy concepts. [REVIEW]George Lakoff - 1973 - Journal of Philosophical Logic 2 (4):458 - 508.
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Modal logic and model theory.Giangiacomo Gerla & Virginia Vaccaro - 1984 - Studia Logica 43 (3):203 - 216.
    We propose a first order modal logic, theQS4E-logic, obtained by adding to the well-known first order modal logicQS4 arigidity axiom schemas:A → □A, whereA denotes a basic formula. In this logic, thepossibility entails the possibility of extending a given classical first order model. This allows us to express some important concepts of classical model theory, such as existential completeness and the state of being infinitely generic, that are not expressibile in classical first order logic. Since they can be expressed in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Modal reduction principles: a parametric shift to graphs.Willem Conradie, Krishna Manoorkar, Alessandra Palmigiano & Mattia Panettiere - 2024 - Journal of Applied Non-Classical Logics 34 (2):174-222.
    Graph-based frames have been introduced as a logical framework which internalises an inherent boundary to knowability (referred to as ‘informational entropy’), due, e.g. to perceptual, evidential or linguistic limits. They also support the interpretation of lattice-based (modal) logics as hyper-constructive logics of evidential reasoning. Conceptually, the present paper proposes graph-based frames as a formal framework suitable for generalising Pawlak's rough set theory to a setting in which inherent limits to knowability exist and need to be considered. Technically, the present paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Monadic Intuitionistic and Modal Logics Admitting Provability Interpretations.Guram Bezhanishvili, Kristina Brantley & Julia Ilin - 2023 - Journal of Symbolic Logic 88 (1):427-467.
    The Gödel translation provides an embedding of the intuitionistic logic$\mathsf {IPC}$into the modal logic$\mathsf {Grz}$, which then embeds into the modal logic$\mathsf {GL}$via the splitting translation. Combined with Solovay’s theorem that$\mathsf {GL}$is the modal logic of the provability predicate of Peano Arithmetic$\mathsf {PA}$, both$\mathsf {IPC}$and$\mathsf {Grz}$admit provability interpretations. When attempting to ‘lift’ these results to the monadic extensions$\mathsf {MIPC}$,$\mathsf {MGrz}$, and$\mathsf {MGL}$of these logics, the same techniques no longer work. Following a conjecture made by Esakia, we add an appropriate version (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstract logical structuralism.Jean-Pierre Marquis - 2020 - Philosophical Problems in Science 69:67-110.
    Structuralism has recently moved center stage in philosophy of mathematics. One of the issues discussed is the underlying logic of mathematical structuralism. In this paper, I want to look at the dual question, namely the underlying structures of logic. Indeed, from a mathematical structuralist standpoint, it makes perfect sense to try to identify the abstract structures underlying logic. We claim that one answer to this question is provided by categorical logic. In fact, we claim that the latter can be seen—and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On non-self-referential fragments of modal logics.Junhua Yu - 2017 - Annals of Pure and Applied Logic 168 (4):776-803.
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform and non uniform strategies for tableaux calculi for modal logics.Stéphane Demri - 1995 - Journal of Applied Non-Classical Logics 5 (1):77-96.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Synonymous logics.Francis Jeffry Pelletier & Alasdair Urquhart - 2003 - Journal of Philosophical Logic 32 (3):259-285.
    This paper discusses the general problem of translation functions between logics, given in axiomatic form, and in particular, the problem of determining when two such logics are "synonymous" or "translationally equivalent." We discuss a proposed formal definition of translational equivalence, show why it is reasonable, and also discuss its relation to earlier definitions in the literature. We also give a simple criterion for showing that two modal logics are not translationally equivalent, and apply this to well-known examples. Some philosophical morals (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Rules versus theorems.Kuno Lorenz - 1973 - Journal of Philosophical Logic 2 (3):352 - 369.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On different intuitionistic calculi and embeddings from int to S.Uwe Egly - 2001 - Studia Logica 69 (2):249-277.
    In this paper, we compare several cut-free sequent systems for propositional intuitionistic logic Intwith respect to polynomial simulations. Such calculi can be divided into two classes, namely single-succedent calculi (like Gentzen's LJ) and multi-succedent calculi. We show that the latter allow for more compact proofs than the former. Moreover, for some classes of formulae, the same is true if proofs in single-succedent calculi are directed acyclic graphs (dags) instead of trees. Additionally, we investigate the effect of weakening rules on the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus.V. V. Rybakov - 1990 - Annals of Pure and Applied Logic 50 (1):71-106.
    Questions connected with the admissibility of rules of inference and the solvability of the substitution problem for modal and intuitionistic logic are considered in an algebraic framework. The main result is the decidability of the universal theory of the free modal algebra imageω extended in signature by adding constants for free generators. As corollaries we obtain: there exists an algorithm for the recognition of admissibility of rules with parameters in the modal system Grz, the substitution problem for Grz and for (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Ruth Barcan Marcus on the Deduction Theorem in Modal Logic.Roberta Ballarin - forthcoming - History and Philosophy of Logic:1-21.
    In this paper, I examine Ruth Barcan Marcus's early formal work on modal systems and the deduction theorem, both for the material and the strict conditional. Marcus proved that the deduction theorem for the material conditional does not hold for system S2 but holds for S4. This last result is at odds with the recent claim that without proper restrictions the deduction theorem fails also for S4. I explain where the contrast stems from. For the strict conditional, Marcus proved the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructive theories through a modal lens.Matteo Tesi - forthcoming - Logic Journal of the IGPL.
    We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relative Interpretation Between Logics.Toby Meadows - 2021 - Erkenntnis 88 (8):3203-3220.
    Interpretation is commonly used in mathematical logic to compare different theories and identify cases where two theories are for almost all intents and purposes the same. Similar techniques are used in the comparison between alternative logics although the links between these approaches are not transparent. This paper generalizes theoretical comparison techniques to the case of logical comparison using an extremely general approach to semantics that provides a very generous playing field upon which to make our comparisons. In particular, we aim (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal translation of substructural logics.Chrysafis Hartonas - 2020 - Journal of Applied Non-Classical Logics 30 (1):16-49.
    In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Multimodal and intuitionistic logics in simple type theory.Christoph Benzmueller & Lawrence Paulson - 2010 - Logic Journal of the IGPL 18 (6):881-892.
    We study straightforward embeddings of propositional normal multimodal logic and propositional intuitionistic logic in simple type theory. The correctness of these embeddings is easily shown. We give examples to demonstrate that these embeddings provide an effective framework for computational investigations of various non-classical logics. We report some experiments using the higher-order automated theorem prover LEO-II.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Epistemic and intuitionistic formal systems.R. C. Flagg & H. Friedman - 1986 - Annals of Pure and Applied Logic 32:53-60.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Completeness results for intuitionistic and modal logic in a categorical setting.M. Makkai & G. E. Reyes - 1995 - Annals of Pure and Applied Logic 72 (1):25-101.
    Versions and extensions of intuitionistic and modal logic involving biHeyting and bimodal operators, the axiom of constant domains and Barcan's formula, are formulated as structured categories. Representation theorems for the resulting concepts are proved. Essentially stronger versions, requiring new methods of proof, of known completeness theorems are consequences. A new type of completeness result, with a topos theoretic character, is given for theories satisfying a condition considered by Lawvere . The completeness theorems are used to conclude results asserting that certain (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The universal modality, the center of a Heyting algebra, and the Blok–Esakia theorem.Guram Bezhanishvili - 2010 - Annals of Pure and Applied Logic 161 (3):253-267.
    We introduce the bimodal logic , which is the extension of Bennett’s bimodal logic by Grzegorczyk’s axiom □→p)→p and show that the lattice of normal extensions of the intuitionistic modal logic WS5 is isomorphic to the lattice of normal extensions of , thus generalizing the Blok–Esakia theorem. We also introduce the intuitionistic modal logic WS5.C, which is the extension of WS5 by the axiom →, and the bimodal logic , which is the extension of Shehtman’s bimodal logic by Grzegorczyk’s axiom, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpretations of intuitionist logic in non-normal modal logics.Colin Oakes - 1999 - Journal of Philosophical Logic 28 (1):47-60.
    Historically, it was the interpretations of intuitionist logic in the modal logic S4 that inspired the standard Kripke semantics for intuitionist logic. The inspiration of this paper is the interpretation of intuitionist logic in the non-normal modal logic S3: an S3 model structure can be 'looked at' as an intuitionist model structure and the semantics for S3 can be 'cashed in' to obtain a non-normal semantics for intuitionist propositional logic. This non-normal semantics is then extended to intuitionist quantificational logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Erdős graphs resolve fine's canonicity problem.Robert Goldblatt, Ian Hodkinson & Yde Venema - 2004 - Bulletin of Symbolic Logic 10 (2):186-208.
    We show that there exist 2 ℵ 0 equational classes of Boolean algebras with operators that are not generated by the complex algebras of any first-order definable class of relational structures. Using a variant of this construction, we resolve a long-standing question of Fine, by exhibiting a bimodal logic that is valid in its canonical frames, but is not sound and complete for any first-order definable class of Kripke frames (a monomodal example can then be obtained using simulation results of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Gödel-McKinsey-Tarski embedding for infinitary intuitionistic logic and its extensions.Matteo Tesi & Sara Negri - 2023 - Annals of Pure and Applied Logic 174 (8):103285.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intuitionistic Sahlqvist Theory for Deductive Systems.Damiano Fornasiere & Tommaso Moraschini - forthcoming - Journal of Symbolic Logic:1-59.
    Sahlqvist theory is extended to the fragments of the intuitionistic propositional calculus that include the conjunction connective. This allows us to introduce a Sahlqvist theory of intuitionistic character amenable to arbitrary protoalgebraic deductive systems. As an application, we obtain a Sahlqvist theorem for the fragments of the intuitionistic propositional calculus that include the implication connective and for the extensions of the intuitionistic linear logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • From Intuitionism to Brouwer's Modal Logic.Zofia Kostrzycka - 2020 - Bulletin of the Section of Logic 49 (4):343-358.
    We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pragmatic logics for hypotheses and evidence.Massimiliano Carrara, Daniele Chiffi & Ciro De Florio - forthcoming - Logic Journal of the IGPL.
    The present paper is devoted to present two pragmatic logics and their corresponding intended interpretations according to which an illocutionary act of hypothesis-making is justified by a scintilla of evidence. The paper first introduces a general pragmatic frame for assertions, expanded to hypotheses, ${\mathsf{AH}}$ and a hypothetical pragmatic logic for evidence ${\mathsf{HLP}}$. Both ${\mathsf{AH}}$ and ${\mathsf{HLP}}$ are extensions of the Logic for Pragmatics, $\mathcal{L}^P$. We compare ${\mathsf{AH}}$ and $\mathsf{HLP}$. Then, we underline the expressive and inferential richness of both systems in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Duality Results for (Co)Residuated Lattices.Chrysafis Hartonas - 2019 - Logica Universalis 13 (1):77-99.
    We present dualities for implicative and residuated lattices. In combination with our recent article on a discrete duality for lattices with unary modal operators, the present article contributes in filling in a gap in the development of Orłowska and Rewitzky’s research program of discrete dualities, which seemed to have stumbled on the case of non-distributive lattices with operators. We discuss dualities via truth, which are essential in relating the non-distributive logic of two-sorted frames with their sorted, residuated modal logic, as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Provability as a deontic notion.Charles F. Kielkopf - 1971 - Theory and Decision 2 (1):1-15.
    The purpose of this paper is to mark a significant difference between classical and several non-classical prepositional calculi. The argument presupposes familiarity with Kripke/Hintikka semantics for modal logic. The non-classical systems are Hintikka's logic of belief and alethic modal systems which have Kripke/Hintikka semantics. The difference is marked by showing that the semantic validity operator in classical logic behaves as a normal alethic necessity-operator while the non-classical semantic validity operators behave as normal deontic ought-operators. The crucial step is showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation