Switch to: Citations

Add references

You must login to add references.
  1. von Neumann’s Theorem Revisited.Pablo Acuña - 2021 - Foundations of Physics 51 (3):1-29.
    According to a popular narrative, in 1932 von Neumann introduced a theorem that intended to be a proof of the impossibility of hidden variables in quantum mechanics. However, the narrative goes, Bell later spotted a flaw that allegedly shows its irrelevance. Bell’s widely accepted criticism has been challenged by Bub and Dieks: they claim that the proof shows that viable hidden variables theories cannot be theories in Hilbert space. Bub’s and Dieks’ reassessment has been in turn challenged by Mermin and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Separating Einstein's separability.Sebastián Murgueitio Ramírez - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:138-149.
    In this paper, I accomplish a conceptual task and a historical task. The conceptual task is to argue that (1) Einstein’s Principle of Separability (henceforth “separability”) is not a supervenience principle and that (2) separability and entanglement are compatible. I support (1) by showing that the conclusion of Einstein’s incompleteness argument would still follow even if one assumes that the state of a composite system does not supervene on the states of the subsystems, and by showing that what Einstein says (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Categoricity of Quantum Mechanics.Iulian D. Toader - 2021 - European Journal for Philosophy of Science 11 (1):1-14.
    The paper argues against an intuitive reading of the Stone-von Neumann theorem as a categoricity result, thereby pointing out that this theorem does not entail any model-theoretical difference between the theories that validate it and those that don't.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An invitation to model theory and c*-algebras.Martino Lupini - 2019 - Bulletin of Symbolic Logic 25 (1):34-100.
    We present an introductory survey to first order logic for metric structures and its applications to C*-algebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complementarity of representations in quantum mechanics.Hans Halvorson - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):45-56.
    We show that Bohr's principle of complementarity between position and momentum descriptions can be formulated rigorously as a claim about the existence of representations of the canonical commutation relations. In particular, in any representation where the position operator has eigenstates, there is no momentum operator, and vice versa. Equivalently, if there are nonzero projections corresponding to sharp position values, all spectral projections of the momentum operator map onto the zero element.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • An Einstein manuscript on the EPR paradox for spin observables.Tilman Sauer - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):879-887.
    A formulation by Einstein of the Einstein-Podolsky-Rosen incompleteness argument found in his scientific manuscripts is presented and briefly commented on. It is the only known version in which Einstein discussed the argument for spin observables. The manuscript dates, in all probability, from late 1954 or early 1955 and hence also represents Einstein's latest version of the incompleteness argument and one of his last statements on quantum theory in general. A puzzling formulation raises the question of Einstein's interpretation of space quantization (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Stone: von Neumann Uniqueness Theorem and Its Ramifications.Stephen Summers - 2001 - Vienna Circle Institute Yearbook 8:135-152.
    In the mid to late 1920s, the emerging theory of quantum mechanics had two main competing formalisms — the wave mechanics of E. Schrödinger [61] and the matrix mechanics of W. Heisenberg, M. Born and P. Jordan [27][2][3].1 Though a connection between the two was quickly pointed out by Schrödinger himself — see paper III in [61] — among others, the folk-theoretic “equivalence” between wave and matrix mechanics continued to generate more detailed study, even into our times.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)Part 1: Theoretical equivalence in physics.James Owen Weatherall - 2019 - Philosophy Compass 14 (5):e12592.
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and “interpretational” equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including (generalized) definitional (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Completeness and the Ends of Axiomatization.Michael Detlefsen - 2014 - In Juliette Kennedy (ed.), Interpreting Gödel: Critical Essays. Cambridge: Cambridge University Press. pp. 59-77.
    The type of completeness Whitehead and Russell aimed for in their Principia Mathematica was what I call descriptive completeness. This is completeness with respect to the propositions that have been proved in traditional mathematics. The notion of completeness addressed by Gödel in his famous work of 1930 and 1931 was completeness with respect to the truths expressible in a given language. What are the relative significances of these different conceptions of completeness for traditional mathematics? What, if any, effects does incompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Why Be regular?, part I.Benjamin Feintzeig, J. B. Le Manchak, Sarita Rosenstock & James Owen Weatherall - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):122-132.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)When champions meet: Rethinking the Bohr–Einstein debate.Nicolaas P. Landsman - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):212-242.
    Einstein's philosophy of physics (as clarified by Fine, Howard, and Held) was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws", to be impossible. Bohr's philosophy (as elucidated by Hooker, Scheibe, Folse, Howard, Held, and others), on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Einstein on Locality and Separability.Don Howard - 1985 - Studies in History and Philosophy of Science Part A 16 (3):171.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • (1 other version)When champions meet: Rethinking the Bohr–Einstein debate.Nicolaas P. Landsman - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):212-242.
    Einstein's philosophy of physics was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws", to be impossible. Bohr's philosophy, on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic quantum theory that - within an appropriate class of physical theories - suitable mathematical translations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the meaning of EPR’s Reality Criterion.Gábor Hofer-Szabó & Márton Gömöri - 2021 - Synthese 199 (5-6):13441-13469.
    This essay has two main claims about EPR’s Reality Criterion. First, we claim that the application of the Reality Criterion makes an essential difference between the EPR argument and Einstein’s later arguments against quantum mechanics. We show that while the EPR argument, making use of the Reality Criterion, does derive that certain interpretations of quantum mechanics are incomplete, Einstein’s later arguments, making no use of the Reality Criterion, do not prove incompleteness, but rather point to the inadequacy of the Copenhagen (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)The Structure and Interpretation of Quantum Mechanics.R. I. G. Hughes, James T. Cushing & Ernan Mcmullin - 1991 - Synthese 86 (1):99-122.
    Download  
     
    Export citation  
     
    Bookmark   80 citations