Switch to: Citations

Add references

You must login to add references.
  1. A Model in Which GCH Holds at Successors but Fails at Limits.James Cummings, Matthew Foreman & Menachem Magidor - 2002 - Bulletin of Symbolic Logic 8 (4):550-552.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
    We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Canonical seeds and Prikry trees.Joel Hamkins - 1997 - Journal of Symbolic Logic 62 (2):373-396.
    Applying the seed concept to Prikry tree forcing P μ , I investigate how well P μ preserves the maximality property of ordinary Prikry forcing and prove that P μ Prikry sequences are maximal exactly when μ admits no non-canonical seeds via a finite iteration. In particular, I conclude that if μ is a strongly normal supercompactness measure, then P μ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. Hugh Woodin's.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations