Switch to: Citations

References in:

Ontology of the wave function and the many-worlds interpretation

(ed.)
Cambridge University Press, UK (2019)

Add references

You must login to add references.
  1. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • (1 other version)Bohmian mechanics.Sheldon Goldstein - 2008 - Stanford Encyclopedia of Philosophy.
    Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave model, and the causal interpretation of quantum mechanics, is a version of quantum theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952. It is the simplest example of what is often called a hidden variables interpretation of quantum mechanics. In Bohmian mechanics a system of particles is described in part by its wave function, evolving, as usual, according to Schrödinger's equation. However, the (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • (1 other version)Evidence and Uncertainty in Everett’s Multiverse.Paul Tappenden - 2011 - British Journal for the Philosophy of Science 62 (1):99-123.
    How does it come about then, that great scientists such as Einstein, Schrödinger and De Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled not against the correctness of the formulae, but against their interpretation. [...] The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • On Gravity’s Role in Quantum State Reduction.R. Penrose - 1996 - \em Gen. Rel. Grav 28:581–600.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Plurality of Worlds.David Lewis - 1986 - Revue Philosophique de la France Et de l'Etranger 178 (3):388-390.
    Download  
     
    Export citation  
     
    Bookmark   2846 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   401 citations  
  • In defence of the self-location uncertainty account of probability in the many-worlds interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (2 other versions)Chance in the Everett interpretation.Simon Saunders - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    According to the Everett interpretation, branching structure and ratios of norms of branch amplitudes are the objective correlates of chance events and chances; that is, 'chance' and 'chancing', like 'red' and 'colour', pick out objective features of reality, albeit not what they seemed. Once properly identified, questions about how and in what sense chances can be observed can be treated as straightforward dynamical questions. On that basis, given the unitary dynamics of quantum theory, it follows that relative and never absolute (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Essai philosophique sur les probabilités.Pierre-Simon Laplace & Maurice Solovine - 1814 - Revue de Métaphysique et de Morale 30 (1):1-2.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Does it Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll.Adrian Kent - 2015 - Foundations of Physics 45 (2):211-217.
    Following a proposal of Vaidman The Stanford encyclopaedia of philosophy, 2014) The probable and the improbable: understanding probability in physics, essays in memory of Itamar Pitowsky, 2011), Sebens and Carroll , have argued that in Everettian quantum theory, observers are uncertain, before they complete their observation, about which Everettian branch they are on. They argue further that this solves the problem of making sense of probabilities within Everettian quantum theory, even though the theory itself is deterministic. We note some problems (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The measure of existence of a quantum world and the Sleeping Beauty Problem.Berry Groisman, Na'ama Hallakoun & Lev Vaidman - 2013 - Analysis 73 (4):695-706.
    Next SectionAn attempt to resolve the controversy regarding the solution of the Sleeping Beauty Problem in the framework of the Many-Worlds Interpretation led to a new controversy regarding the Quantum Sleeping Beauty Problem. We apply the concept of a measure of existence of a world and reach the solution known as ‘thirder’ solution which differs from Peter Lewis’s ‘halfer’ assertion. We argue that this method provides a simple and powerful tool for analysing rational decision theory problems.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • Branching and Uncertainty.Simon Saunders & David Wallace - 2008 - British Journal for the Philosophy of Science 59 (3):293-305.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utterances typically made about (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Probability in the Many-Worlds Interpretation of Quantum Mechanics.Lev Vaidman - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 299--311.
    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no ``probability'' for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: a). A ``sleeping pill'' gedanken experiment which makes correspondence between an illegitimate question: ``What is the probability of an outcome of a quantum measurement?'' with a legitimate question: ``What is the probability that ``I'' am in the world corresponding to that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (2 other versions)Chance in the Everett interpretation.Simon Saunders - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A Universal Master Equation for the Gravitational Violation of Quantum Mechanics.L. Diosi - 1987 - \em Phys. Lett. A 120:377-381.
    Download  
     
    Export citation  
     
    Bookmark   1 citation