Switch to: Citations

Add references

You must login to add references.
  1. No superluminal propagation for classical relativistic and relativistic quantum fields.John Earman - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):102-108.
    A criterion is proposed to ensure that classical relativistic fields do not propagate superluminally. If this criterion does indeed serve as a sufficient condition for no superluminal propagation it follows that various other criteria found in the physics literature cannot serve as necessary conditions since they can fail although the proffered condition holds. The rejected criteria rely on energy conditions that are believed to hold for most classical fields used in actual applications. But these energy conditions are known to fail (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Primer on Energy Conditions.Erik Curiel - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser. pp. 43-104.
    An energy condition, in the context of a wide class of spacetime theories, is, crudely speaking, a relation one demands the stress-energy tensor of matter satisfy in order to try to capture the idea that "energy should be positive". The remarkable fact I will discuss in this paper is that such simple, general, almost trivial seeming propositions have profound and far-reaching import for our understanding of the structure of relativistic spacetimes. It is therefore especially surprising when one also learns that (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.David Malament - 2012 - Chicago: Chicago University Press.
    1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (...)
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Reconsidering relativistic causality.Jeremy Butterfield - 2007 - International Studies in the Philosophy of Science 21 (3):295 – 328.
    I discuss the idea of relativistic causality, i.e., the requirement that causal processes or signals can propagate only within the light-cone. After briefly locating this requirement in the philosophy of causation, my main aim is to draw philosophers' attention to the fact that it is subtle, indeed problematic, in relativistic quantum physics: there are scenarios in which it seems to fail. I set aside two such scenarios, which are familiar to philosophers of physics: the pilot-wave approach, and the Newton-Wigner representation. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Superluminal Signaling and Relativity.Steven Weinstein - 2006 - Synthese 148 (2):381-399.
    Special relativity is said to prohibit faster-than-light (superluminal) signaling, yet controversy regularly arises as to whether this or that physical phenomenon violates the prohibition. I argue that the controversy is a result of a lack of clarity as to what it means to ‘signal’, and I propose a criterion. I show that according to this criterion, superluminal signaling is not prohibited by special relativity.
    Download  
     
    Export citation  
     
    Bookmark   15 citations