Switch to: Citations

Add references

You must login to add references.
  1. Gibbs' paradox and non-uniform convergence.K. G. Denbigh & M. L. G. Redhead - 1989 - Synthese 81 (3):283 - 312.
    It is only when mixing two or more pure substances along a reversible path that the entropy of the mixing can be made physically manifest. It is not, in this case, a mere mathematical artifact. This mixing requires a process of successive stages. In any finite number of stages, the external manifestation of the entropy change, as a definite and measurable quantity of heat, isa fully continuous function of the relevant variables. It is only at an infinite and unattainable limit (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Symmetries and Paraparticles as a Motivation for Structuralism.Adam Caulton & Jeremy Butterfield - 2012 - British Journal for the Philosophy of Science 63 (2):233-285.
    This article develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR, the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature—a theory's ‘not caring which point, or particle, is which’—supported a structuralist ontology. Pooley criticizes this analogy: (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On Kinds of Indiscernibility in Logic and Metaphysics.Adam Caulton & Jeremy Butterfield - 2012 - British Journal for the Philosophy of Science 63 (1):27-84.
    Using the Hilbert-Bernays account as a spring-board, we first define four ways in which two objects can be discerned from one another, using the non-logical vocabulary of the language concerned. Because of our use of the Hilbert-Bernays account, these definitions are in terms of the syntax of the language. But we also relate our definitions to the idea of permutations on the domain of quantification, and their being symmetries. These relations turn out to be subtle---some natural conjectures about them are (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Identity and individuality in classical and quantum physics.Steven French - 1989 - Australasian Journal of Philosophy 67 (4):432 – 446.
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Quantum statistics, identical particles and correlations.Dennis Dieks - 1990 - Synthese 82 (1):127 - 155.
    It is argued that the symmetry and anti-symmetry of the wave functions of systems consisting of identical particles have nothing to do with the observational indistinguishability of these particles. Rather, a much stronger conceptual indistinguishability is at the bottom of the symmetry requirements. This can be used to argue further, in analogy to old arguments of De Broglie and Schrödinger, that the reality described by quantum mechanics has a wave-like rather than particle-like structure. The question of whether quantum statistics alone (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Probabilities in Statistical Mechanics: Subjective, Objective, or a Bit of Both?Wayne C. Myrvold - unknown
    This paper addresses the question of how we should regard the probability distributions introduced into statistical mechanics. It will be argued that it is problematic to take them either as purely subjective credences, or as objective chances. I will propose a third alternative: they are "almost objective" probabilities, or "epistemic chances". The definition of such probabilities involves an interweaving of epistemic and physical considerations, and so cannot be classified as either purely subjective or purely objective. This conception, it will be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Handbook of philosophy of science.Jeremy Butterfield & John Earman - 2007 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Elsevier.
    Download  
     
    Export citation  
     
    Bookmark   12 citations