Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Descriptive Set Theory.Richard Mansfield - 1981 - Journal of Symbolic Logic 46 (4):874-876.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Suitable extender models I.W. Hugh Woodin - 2010 - Journal of Mathematical Logic 10 (1):101-339.
    We investigate both iteration hypotheses and extender models at the level of one supercompact cardinal. The HOD Conjecture is introduced and shown to be a key conjecture both for the Inner Model Program and for understanding the limits of the large cardinal hierarchy. We show that if the HOD Conjecture is true then this provides strong evidence for the existence of an ultimate version of Gödel's constructible universe L. Whether or not this "ultimate" L exists is now arguably the central (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • PFA Implies ADL(R).John R. Steel - 2005 - Journal of Symbolic Logic 70 (4):1255 - 1296.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Descriptive Set Theory.Yiannis Nicholas Moschovakis - 1982 - Studia Logica 41 (4):429-430.
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Stacking mice.Ronald Jensen, Ernest Schimmerling, Ralf Schindler & John Steel - 2009 - Journal of Symbolic Logic 74 (1):315-335.
    We show that either of the following hypotheses imply that there is an inner model with a proper class of strong cardinals and a proper class of Woodin cardinals. 1) There is a countably closed cardinal k ≥ N₃ such that □k and □(k) fail. 2) There is a cardinal k such that k is weakly compact in the generic extension by Col(k, k⁺). Of special interest is 1) with k = N₃ since it follows from PFA by theorems of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Indestructible Weakly Compact Cardinals and the Necessity of Supercompactness for Certain Proof Schemata.J. D. Hamkins & A. W. Apter - 2001 - Mathematical Logic Quarterly 47 (4):563-572.
    We show that if the weak compactness of a cardinal is made indestructible by means of any preparatory forcing of a certain general type, including any forcing naively resembling the Laver preparation, then the cardinal was originally supercompact. We then apply this theorem to show that the hypothesis of supercompactness is necessary for certain proof schemata.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Combined Maximality Principles up to large cardinals.Gunter Fuchs - 2009 - Journal of Symbolic Logic 74 (3):1015-1046.
    The motivation for this paper is the following: In [4] I showed that it is inconsistent with ZFC that the Maximality Principle for directed closed forcings holds at unboundedly many regular cardinals κ (even only allowing κ itself as a parameter in the Maximality Principle for < κ -closed forcings each time). So the question is whether it is consistent to have this principle at unboundedly many regular cardinals or at every regular cardinal below some large cardinal κ (instead of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The largest countable inductive set is a mouse set.Mitch Rudominer - 1999 - Journal of Symbolic Logic 64 (2):443-459.
    Let κ R be the least ordinal κ such that L κ (R) is admissible. Let $A = \{x \in \mathbb{R} \mid (\exists\alpha such that x is ordinal definable in L α (R)}. It is well known that (assuming determinacy) A is the largest countable inductive set of reals. Let T be the theory: ZFC - Replacement + "There exists ω Woodin cardinals which are cofinal in the ordinals." T has consistency strength weaker than that of the theory ZFC + (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations