Switch to: Citations

Add references

You must login to add references.
  1. Characterizing Common Cause Closed Probability Spaces.Zalán Gyenis & Miklós Rédei - 2011 - Philosophy of Science 78 (3):393-409.
    A probability space is common cause closed if it contains a Reichenbachian common cause of every correlation in it and common cause incomplete otherwise. It is shown that a probability space is common cause incomplete if and only if it contains more than one atom and that every space is common cause completable. The implications of these results for Reichenbach's Common Cause Principle are discussed, and it is argued that the principle is only falsifiable if conditions on the common cause (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The direction of time.Hans Reichenbach - 1956 - Mineola, N.Y.: Dover Publications. Edited by Maria Reichenbach.
    The final work of a distinguished physicist, this remarkable volume examines the emotive significance of time, the time order of mechanics, the time direction of thermodynamics and microstatistics, the time direction of macrostatistics, and the time of quantum physics. Coherent discussions include accounts of analytic methods of scientific philosophy in the investigation of probability, quantum mechanics, the theory of relativity, and causality. "[Reichenbach’s] best by a good deal."—Physics Today. 1971 ed.
    Download  
     
    Export citation  
     
    Bookmark   467 citations  
  • The Direction of Time.Hans Reichenbach - 1956 - Philosophy 34 (128):65-66.
    Download  
     
    Export citation  
     
    Bookmark   428 citations  
  • The Common Cause Principle.Frank Arntzenius - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:227 - 237.
    The common cause principle states that correlations have prior common causes which screen off those correlations. I argue that the common cause principle is false in many circumstances, some of which are very general. I then suggest that more restricted versions of the common cause principle might hold, and I prove such a restricted version.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Completion of the Causal Completability Problem.Michał Marczyk & Leszek Wroński - 2015 - British Journal for the Philosophy of Science 66 (2):307-326.
    We give a few results concerning the notions of causal completability and causal closedness of classical probability spaces . We prove that any classical probability space has a causally closed extension; any finite classical probability space with positive rational probabilities on the atoms of the event algebra can be extended to a causally up-to-three-closed finite space; and any classical probability space can be extended to a space in which all correlations between events that are logically independent modulo measure zero event (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Local Primitive Causality and the Common Cause Principle in Quantum Field Theory.Miklos Redei & Stephen J. Summers - 2001 - Foundations of Physics 32 (3):335-355.
    If $\mathcal{A}$ (V) is a net of local von Neumann algebras satisfying standard axioms of algebraic relativistic quantum field theory and V 1 and V 2 are spacelike separated spacetime regions, then the system ( $\mathcal{A}$ (V 1 ), $\mathcal{A}$ (V 2 ), φ) is said to satisfy the Weak Reichenbach's Common Cause Principle iff for every pair of projections A∈ $\mathcal{A}$ (V 1 ), B∈ $\mathcal{A}$ (V 2 ) correlated in the normal state φ there exists a projection C (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Reichenbachian common cause systems.Gábor Hofer-Szabó & Miklos Redei - 2004 - International Journal of Theoretical Physics 43:1819-1826.
    A partition $\{C_i\}_{i\in I}$ of a Boolean algebra $\cS$ in a probability measure space $(\cS,p)$ is called a Reichenbachian common cause system for the correlated pair $A,B$ of events in $\cS$ if any two elements in the partition behave like a Reichenbachian common cause and its complement, the cardinality of the index set $I$ is called the size of the common cause system. It is shown that given any correlation in $(\cS,p)$, and given any finite size $n>2$, the probability space (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • When can statistical theories be causally closed?Balázs Gyenis & Miklós Rédei - 2002 - Foundations of Physics 34 (9):1285-1303.
    The notion of common cause closedness of a classical, Kolmogorovian probability space with respect to a causal independence relation between the random events is defined, and propositions are presented that characterize common cause closedness for specific probability spaces. It is proved in particular that no probability space with a finite number of random events can contain common causes of all the correlations it predicts; however, it is demonstrated that probability spaces even with a finite number of random events can be (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Only Countable Reichenbachian Common Cause Systems Exist.Leszek Wroński & Michał Marczyk - 2010 - Foundations of Physics 40 (8):1155-1160.
    In this paper we give a positive answer to a problem posed by Hofer-Szabó and Rédei (Int. J. Theor. Phys. 43:1819–1826, 2004) regarding the existence of infinite Reichenbachian common cause systems (RCCSs). An example of a countably infinite RCCS is presented. It is also determined that no RCCSs of greater cardinality exist.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Charybdis of Realism: Epistemological Implications of Bell’s Inequality.Bas C. van Fraassen - 1982 - Synthese 52 (1):25-38.
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • The Common Cause Principle. Explanation via Screening off.Leszek Wronski - 2010 - Dissertation, Jagiellonian University
    My Ph.D. dissertation written under the supervision of Prof. Tomasz Placek at the Institute of Philosophy of the Jagiellonian University in Kraków. In one of its most basic and informal shapes, the principle of the common cause states that any surprising correlation between two factors which are believed not to directly influence one another is due to their common cause. Here we will be concerned with a version od this idea which possesses a purely probabilistic formulation. It was introduced, in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reichenbachian Common Cause Systems of Arbitrary Finite Size Exist.Gábor Hofer-Szabó & Miklós Rédei - 2006 - Foundations of Physics 36 (5):745-756.
    A partition $\{C_i\}_{i\in I}$ of a Boolean algebra Ω in a probability measure space (Ω, p) is called a Reichenbachian common cause system for the correlation between a pair A,B of events in Ω if any two elements in the partition behave like a Reichenbachian common cause and its complement; the cardinality of the index set I is called the size of the common cause system. It is shown that given any non-strict correlation in (Ω, p), and given any finite (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Reichenbach's common cause principle and Reichenbach's notion of common cause.G. Hofer-Szabo - 1999 - British Journal for the Philosophy of Science 50 (3):377-399.
    It is shown that, given any finite set of pairs of random events in a Boolean algebra which are correlated with respect to a fixed probability measure on the algebra, the algebra can be extended in such a way that the extension contains events that can be regarded as common causes of the correlations in the sense of Reichenbach's definition of common cause. It is shown, further, that, given any quantum probability space and any set of commuting events in it (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations