Switch to: Citations

Add references

You must login to add references.
  1. The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   498 citations  
  • Categories for the Working Mathematician.Saunders Maclane - 1971 - Springer.
    Category Theory has developed rapidly. This book aims to present those ideas and methods which can now be effectively used by Mathe­ maticians working in a variety of other fields of Mathematical research. This occurs at several levels. On the first level, categories provide a convenient conceptual language, based on the notions of category, functor, natural transformation, contravariance, and functor category. These notions are presented, with appropriate examples, in Chapters I and II. Next comes the fundamental idea of an adjoint (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Louis Osgood Kattsoff. Modality and probability. The philosophical review, vol. 46 (1937), pp. 78–85.Garrett Birkhoff & John von Neumann - 1937 - Journal of Symbolic Logic 2 (1):44-44.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • Two applications of logic to mathematics.Gaisi Takeuti - 1978 - [Princeton, N.J.]: Princeton University Press.
    Using set theory in the first part of his book, and proof theory in the second, Gaisi Takeuti gives us two examples of how mathematical logic can be used to obtain results previously derived in less elegant fashion by other mathematical techniques, especially analysis. In Part One, he applies Scott- Solovay's Boolean-valued models of set theory to analysis by means of complete Boolean algebras of projections. In Part Two, he develops classical analysis including complex analysis in Peano's arithmetic, showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • From absolute to local mathematics.J. L. Bell - 1986 - Synthese 69 (3):409 - 426.
    In this paper (a sequel to [4]) I put forward a "local" interpretation of mathematical concepts based on notions derived from category theory. The fundamental idea is to abandon the unique absolute universe of sets central to the orthodox set-theoretic account of the foundations of mathematics, replacing it by a plurality of local mathematical frameworks - elementary toposes - defined in category-theoretic terms.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A topos perspective on the kochen-Specker theorem: I. Quantum states as generalised valuations.Chris Isham & Jeremy Butterfield - unknown
    Any attempt to construct a realist interpretation of quantum theory founders on the Kochen-Specker theorem, which asserts the impossibility of assigning values to quantum quantities in a way that preserves functional relations between them. We construct a new type of valuation which is defined on all operators, and which respects an appropriate version of the functional composition principle. The truth-values assigned to propositions are (i) contextual; and (ii) multi-valued, where the space of contexts and the multi-valued logic for each context (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity.C. J. Isham & J. Butterfield - 2000 - Foundations of Physics 30 (10):1707-1735.
    We discuss some ways in which topos theory (a branch of category theory) can be applied to interpretative problems in quantum theory and quantum gravity. In Sec.1, we introduce these problems. In Sec.2, we introduce topos theory, especially the idea of a topos of presheaves. In Sec.3, we discuss several possible applications of topos theory to the problems in Sec.1. In Sec.4, we draw some conclusions.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A topos perspective on the kochen-Specker theorem: II. Conceptual aspects, and classical analogues.Jeremy Butterfield & Chris Isham - unknown
    In a previous paper, we have proposed assigning as the value of a physical quantity in quantum theory, a certain kind of set (a sieve) of quantities that are functions of the given quantity. The motivation was in part physical---such a valuation illuminates the Kochen-Specker theorem; and in part mathematical---the valuation arises naturally in the topos theory of presheaves. This paper discusses the conceptual aspects of this proposal. We also undertake two other tasks. First, we explain how the proposed valuations (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Categories, toposes and sets.J. L. Bell - 1982 - Synthese 51 (3):293 - 337.
    This paper is an introduction to topos theory which assumes no prior knowledge of category theory. It includes a discussion of internal logic in a topos, A characterization of the category of sets, And an investigation of the notions of topology and sheaf in a topos.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Observations on category theory.John L. Bell - 2001 - Axiomathes 12 (1):151-155.
    is a presentation of mathematics in terms of the fundamental concepts of transformation, and composition of transformations. While the importance of these concepts had long been recognized in algebra (for example, by Galois through the idea of a group of permutations) and in geometry (for example, by Klein in his Erlanger Programm), the truly universal role they play in mathematics did not really begin to be appreciated until the rise of abstract algebra in the 1930s. In abstract algebra the idea (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On quantum event structures. I. The categorical scheme.Elias Zafiris - 2001 - Foundations Of Physics Letters 14 (2):147-166.
    In this paper a mathematical scheme for the analysis of quantum event structures is being proposed based on category theoretical methods. It is shown that there exists an adjunctive correspondence between Boolean presheaves of event algebras and quantum event algebras. The adjunction permits a characterization of quantum event structures as Boolean manifolds of event structures. -/- .
    Download  
     
    Export citation  
     
    Bookmark   1 citation