Switch to: References

Citations of:

Two applications of logic to mathematics

[Princeton, N.J.]: Princeton University Press (1978)

Add citations

You must login to add citations.
  1. Hilbert’s Program.Richard Zach - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • From absolute to local mathematics.J. L. Bell - 1986 - Synthese 69 (3):409 - 426.
    In this paper (a sequel to [4]) I put forward a "local" interpretation of mathematical concepts based on notions derived from category theory. The fundamental idea is to abandon the unique absolute universe of sets central to the orthodox set-theoretic account of the foundations of mathematics, replacing it by a plurality of local mathematical frameworks - elementary toposes - defined in category-theoretic terms.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • How subtle is Gödel's theorem? More on Roger Penrose.Martin Davis - 1993 - Behavioral and Brain Sciences 16 (3):611-612.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Pi on Earth, or Mathematics in the Real World.Bart Van Kerkhove & Jean Paul Van Bendegem - 2008 - Erkenntnis 68 (3):421-435.
    We explore aspects of an experimental approach to mathematical proof, most notably number crunching, or the verification of subsequent particular cases of universal propositions. Since the rise of the computer age, this technique has indeed conquered practice, although it implies the abandonment of the ideal of absolute certainty. It seems that also in mathematical research, the qualitative criterion of effectiveness, i.e. to reach one’s goals, gets increasingly balanced against the quantitative one of efficiency, i.e. to minimize one’s means/ends ratio. Our (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Random World and Quantum Mechanics.Jerzy Król, Krzysztof Bielas & Torsten Asselmeyer-Maluga - 2023 - Foundations of Science 28 (2):575-625.
    Quantum mechanics (QM) predicts probabilities on the fundamental level which are, via Born probability law, connected to the formal randomness of infinite sequences of QM outcomes. Recently it has been shown that QM is algorithmic 1-random in the sense of Martin–Löf. We extend this result and demonstrate that QM is algorithmic $$\omega$$ -random and generic, precisely as described by the ’miniaturisation’ of the Solovay forcing to arithmetic. This is extended further to the result that QM becomes Zermelo–Fraenkel Solovay random on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thought Experiments in Mathematics: Anything but Proof.Jean Paul van Bendegem - 2003 - Philosophica 72 (2):9-33.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Foundations for analysis and proof theory.Wilfried Sieg - 1984 - Synthese 60 (2):159 - 200.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quantum Mechanics, Formalization and the Cosmological Constant Problem.Jerzy Król & Torsten Asselmeyer-Maluga - 2020 - Foundations of Science 25 (4):879-904.
    Based on formal arguments from Zermelo–Fraenkel set theory we develop the environment for explaining and resolving certain fundamental problems in physics. By these formal tools we show that any quantum system defined by an infinite dimensional Hilbert space of states interferes with the spacetime structure M. M and the quantum system both gain additional degrees of freedom, given by models of Zermelo–Fraenkel set theory. In particular, M develops the ground state where classical gravity vanishes. Quantum mechanics distinguishes set-theoretic random forcing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Correspondence Truth and Quantum Mechanics.Vassilios Karakostas - 2014 - Axiomathes 24 (3):343-358.
    The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either ‘true’ or ‘false’, describing what is actually the case at a certain (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Teoria kategorii i niektóre jej logiczne aspekty (Category theory and some of its logical aspects).Mariusz Stopa - 2018 - Philosophical Problems in Science 64:7-58.
    [The paper is in Polish, an English abstract is given only for information.] This article is intended for philosophers and logicians as a short partial introduction to category theory and its peculiar connection with logic. First, we consider CT itself. We give a brief insight into its history, introduce some basic definitions and present examples. In the second part, we focus on categorical topos semantics for propositional logic. We give some properties of logic in toposes, which, in general, is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Background Independence in Quantum Gravity and Forcing Constructions.Jerzy Król - 2004 - Foundations of Physics 34 (3):361-403.
    A general duality connecting the level of a formal theory and of a metatheory is proposed. Because of the role of natural numbers in a metatheory the existence of a dual theory is conjectured, in which the natural numbers become formal in the theory but in formalizing non-formal natural numbers taken from the dual metatheory these numbers become nonstandard. For any formal theory there may be in principle a dual theory. The dual shape of the lattice of projections over separable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical quantum theory I: Random ultrafilters as hidden variables.William Boos - 1996 - Synthese 107 (1):83 - 143.
    The basic purpose of this essay, the first of an intended pair, is to interpret standard von Neumann quantum theory in a framework of iterated measure algebraic truth for mathematical (and thus mathematical-physical) assertions — a framework, that is, in which the truth-values for such assertions are elements of iterated boolean measure-algebras (cf. Sections 2.2.9, 5.2.1–5.2.6 and 5.3 below).The essay itself employs constructions of Takeuti's boolean-valued analysis (whose origins lay in work of Scott, Solovay, Krauss and others) to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Klassinen matematiikka ja logiikka.Panu Raatikainen - 1996 - In Christoffer Gefwert (ed.), Logiikka, matematiikka ja tietokone – Perusteet: historiaa, filosofiaa ja sovelluksia. Finnish Artificial Intelligence Society.
    Toisaalta ennennäkemätön äärettömien joukko-opillisten menetelmien hyödyntäminen sekä toisaalta epäilyt niiden hyväksyttävyydestä ja halu oikeuttaa niiden käyttö ovat ratkaisevasti muovanneet vuosisatamme matematiikkaa ja logiikkaa. Tämän kehityksen vaikutus nykyajan filosofiaan on myös ollut valtaisa; merkittävää osaa siitä ei voi edes ymmärtää tuntematta sen yhteyttä tähän matematiikan ja logiikan vallankumoukseen. Lähestymistapoja, jotka tavalla tai toisella hyväksyvät äärettömän matematiikan ja perinteisten logiikan sääntöjen (erityisesti kolmannen poissuljetun lain) soveltamisen myös sen piirissä, on tullut tavaksi kutsua klassiseksi matematiikaksi ja logiikaksi erotuksena nämä hylkäävistä radikaaleista intuitionistisista ja (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Contextual semantics in quantum mechanics from a categorical point of view.Vassilios Karakostas & Elias Zafiris - 2017 - Synthese 194 (3).
    The category-theoretic representation of quantum event structures provides a canonical setting for confronting the fundamental problem of truth valuation in quantum mechanics as exemplified, in particular, by Kochen–Specker’s theorem. In the present study, this is realized on the basis of the existence of a categorical adjunction between the category of sheaves of variable local Boolean frames, constituting a topos, and the category of quantum event algebras. We show explicitly that the latter category is equipped with an object of truth values, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum theory and consciousness.David L. Wilson - 1993 - Behavioral and Brain Sciences 16 (3):615-616.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)On Weak Theories of Sets and Classes which are Based on Strict ∏11-REFLECTION.Andrea Cantini - 1985 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (21-23):321-332.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cosmological choices.David Finkelstein - 1982 - Synthese 50 (3):399 - 420.
    Present physics is a mix of theories of time, logic, and matter. These may have a common origin in a unitary quantum cosmology founded on process alone. A quantum theory of sets, or something like it, is helpful for such a cosmology, and one is constructed by adding superposition to a slightly reformulated classical set theory. There is an elementary or atomic process in such theories. The size of its characteristic time is estimated from the mass spectrum, although this gives (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On Weak Theories of Sets and Classes which are Based on Strict ∏math image-REFLECTION.Andrea Cantini - 1985 - Mathematical Logic Quarterly 31 (21-23):321-332.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mind the truth: Penrose's new step in the Gödelian argument.Salvatore Guccione - 1993 - Behavioral and Brain Sciences 16 (3):612-613.
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean Valued Dedekind Domains.Hirokazu Nishimura - 1991 - Mathematical Logic Quarterly 37 (5-6):65-76.
    Download  
     
    Export citation  
     
    Bookmark  
  • On a duality between Boolean valued analysis and topological Reduction Theory.Hirokazu Nishimura - 1993 - Mathematical Logic Quarterly 39 (1):23-32.
    By creating an unbounded topological reduction theory for complex Hilbert spaces over Stonean spaces, we can give a category-theoretic duality between Boolean valued analysis and topological reduction theory for complex Hilbert spaces. MSC: 03C90, 03E40, 06E15, 46M99.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Some Boolean Valued Commutative Algebra.Hirokazu Nishimura - 1991 - Mathematical Logic Quarterly 37 (23‐24):367-384.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Some Boolean Valued Commutative Algebra.Hirokazu Nishimura - 1991 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 37 (23-24):367-384.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Some connections between boolean valued analysis and topological reduction theory for C*‐algebras.Hirokazu Nishimura - 1990 - Mathematical Logic Quarterly 36 (5):471-479.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Some connections between boolean valued analysis and topological reduction theory for C*-algebras.Hirokazu Nishimura - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (5):471-479.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Czy wiemy dlaczego czasoprzestrzeń na dużych skalach jest gładka i 4-wymiarowa?Jerzy Król - 2017 - Philosophical Problems in Science 63:101-111.
    Even though the description of the universe in cosmology is known to be given by a smooth 4-dimensional Lorentz manifold for energies below Planck scale, one still can ask about the origins of this phenomenon. In this paper we show that mathematics used for description of quantum systems at micro scale determines smoothness of spacetime at large cosmological scales and indicates the dimension 4 as the only possible dimension for spacetime.
    Download  
     
    Export citation  
     
    Bookmark  
  • A boolean transfer principle from L*‐Algebras to AL*‐Algebras.Hirokazu Nishimura - 1993 - Mathematical Logic Quarterly 39 (1):241-250.
    Just as Kaplansky [4] has introduced the notion of an AW*-module as a generalization of a complex Hilbert space, we introduce the notion of an AL*-algebra, which is a generalization of that of an L*-algebra invented by Schue [9, 10]. By using Boolean valued methods developed by Ozawa [6–8], Takeuti [11–13] and others, we establish its basic properties including a fundamental structure theorem. This paper should be regarded as a continuation or our previous paper [5], the familiarity with which is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean Valued and Stone Algebra Valued Measure Theories.Hirokazu Nishimura - 1994 - Mathematical Logic Quarterly 40 (1):69-75.
    In conventional generalization of the main results of classical measure theory to Stone algebra valued measures, the values that measures and functions can take are Booleanized, while the classical notion of a σ-field is retained. The main purpose of this paper is to show by abundace of illustrations that if we agree to Booleanize the notion of a σ-field as well, then all the glorious legacy of classical measure theory is preserved completely.
    Download  
     
    Export citation  
     
    Bookmark  
  • An emperor still without mind.Roger Penrose - 1993 - Behavioral and Brain Sciences 16 (3):616-622.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The incompleteness of quantum physics.Euan J. Squires - 1993 - Behavioral and Brain Sciences 16 (3):613-614.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitive mapping and algorithmic complexity: Is there a role for quantum processes in the evolution of human consciousness?Ron Wallace - 1993 - Behavioral and Brain Sciences 16 (3):614-615.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Event Structures from the Perspective of Grothendieck Topoi.Elias Zafiris - 2004 - Foundations of Physics 34 (7):1063-1090.
    We develop a categorical scheme of interpretation of quantum event structures from the viewpoint of Grothendieck topoi. The construction is based on the existence of an adjunctive correspondence between Boolean presheaves of event algebras and Quantum event algebras, which we construct explicitly. We show that the established adjunction can be transformed to a categorical equivalence if the base category of Boolean event algebras, defining variation, is endowed with a suitable Grothendieck topology of covering systems. The scheme leads to a sheaf (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum theory to define (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Virtual modality. [REVIEW]William Boos - 2003 - Synthese 136 (3):435 - 491.
    Model-theoretic 1-types overa given first-order theory T may be construed as natural metalogical miniatures of G. W. Leibniz' ``complete individual notions'', ``substances'' or ``substantial forms''. This analogy prompts this essay's modal semantics for an essentiallyundecidable first-order theory T, in which one quantifies over such ``substances'' in a boolean universe V(C), where C is the completion of the Lindenbaum-algebra of T.More precisely, one can define recursively a set-theoretic translate of formulae N of formulae of a normal modal theory Tm based on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Model for Spacetime: The Role of Interpretation in Some Grothendieck Topoi. [REVIEW]Jerzy Król - 2006 - Foundations of Physics 36 (7):1070-1098.
    We analyse the proposition that the spacetime structure is modified at short distances or at high energies due to weakening of classical logic. The logic assigned to the regions of spacetime is intuitionistic logic of some topoi. Several cases of special topoi are considered. The quantum mechanical effects can be generated by such semi-classical spacetimes. The issues of: background independence and general relativity covariance, field theoretic renormalization of divergent expressions, the existence and definition of path integral measures, are briefly discussed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation