Results for ' 03A05'

10 found
Order:
  1. Varieties of Class-Theoretic Potentialism.Neil Barton & Kameryn J. Williams - 2024 - Review of Symbolic Logic 17 (1):272-304.
    We explain and explore class-theoretic potentialism—the view that one can always individuate more classes over a set-theoretic universe. We examine some motivations for class-theoretic potentialism, before proving some results concerning the relevant potentialist systems (in particular exhibiting failures of the $\mathsf {.2}$ and $\mathsf {.3}$ axioms). We then discuss the significance of these results for the different kinds of class-theoretic potentialists.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Two-Sorted Frege Arithmetic is Not Conservative.Stephen Mackereth & Jeremy Avigad - 2022 - Review of Symbolic Logic 16 (4):1199-1232.
    Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn’t. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. The Logic of Hyperlogic. Part A: Foundations.Alexander W. Kocurek - 2024 - Review of Symbolic Logic 17 (1):244-271.
    Hyperlogic is a hyperintensional system designed to regiment metalogical claims (e.g., “Intuitionistic logic is correct” or “The law of excluded middle holds”) into the object language, including within embedded environments such as attitude reports and counterfactuals. This paper is the first of a two-part series exploring the logic of hyperlogic. This part presents a minimal logic of hyperlogic and proves its completeness. It consists of two interdefined axiomatic systems: one for classical consequence (truth preservation under a classical interpretation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Towards the Inevitability of Non-Classical Probability.Giacomo Molinari - 2023 - Review of Symbolic Logic 16 (4):1053-1079.
    This paper generalises an argument for probabilism due to Lindley [9]. I extend the argument to a number of non-classical logical settings whose truth-values, seen here as ideal aims for belief, are in the set $\{0,1\}$, and where logical consequence $\models $ is given the “no-drop” characterization. First I will show that, in each of these settings, an agent’s credence can only avoid accuracy-domination if its canonical transform is a (possibly non-classical) probability function. In other words, if an agent values (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Bolzano’s Mathematical Infinite.Anna Bellomo & Guillaume Massas - 2021 - Review of Symbolic Logic:1-55.
    Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be equipped (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Hume’s Principle, Bad Company, and the Axiom of Choice.Sam Roberts & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (4):1158-1176.
    One prominent criticism of the abstractionist program is the so-called Bad Company objection. The complaint is that abstraction principles cannot in general be a legitimate way to introduce mathematical theories, since some of them are inconsistent. The most notorious example, of course, is Frege’s Basic Law V. A common response to the objection suggests that an abstraction principle can be used to legitimately introduce a mathematical theory precisely when it is stable: when it can be made true on all sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Is Causal Reasoning Harder Than Probabilistic Reasoning?Milan Mossé, Duligur Ibeling & Thomas Icard - 2024 - Review of Symbolic Logic 17 (1):106-131.
    Many tasks in statistical and causal inference can be construed as problems of entailment in a suitable formal language. We ask whether those problems are more difficult, from a computational perspective, for causal probabilistic languages than for pure probabilistic (or “associational”) languages. Despite several senses in which causal reasoning is indeed more complex—both expressively and inferentially—we show that causal entailment (or satisfiability) problems can be systematically and robustly reduced to purely probabilistic problems. Thus there is no jump in computational complexity. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Collection Frames for Distributive Substructural Logics.Greg Restall & Shawn Standefer - 2023 - Review of Symbolic Logic 16 (4):1120-1157.
    We present a new frame semantics for positive relevant and substructural propositional logics. This frame semantics is both a generalisation of Routley–Meyer ternary frames and a simplification of them. The key innovation of this semantics is the use of a single accessibility relation to relate collections of points to points. Different logics are modeled by varying the kinds of collections used: they can be sets, multisets, lists or trees. We show that collection frames on trees are sound and complete for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation