The perception of reality by biosystems is based on different, and in certain respects more effective, principles than those utilized by the more formal procedures of science. As a result, what appears as random pattern to the scientific method can be meaningful pattern to a living organism. The existence of this complementary perception of reality makes possible in principle effective use by organisms of the direct interconnections between spatially separated objects shown to exist in the work of J. S. Bell.
The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...) and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. -/- This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. -/- Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. -/- The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses. (shrink)
Edited proceedings of an interdisciplinary symposium on consciousness held at the University of Cambridge in January 1978. Includes a foreword by Freeman Dyson. Chapter authors: G. Vesey, R.L. Gregory, H.C. Longuet-Higgins, N.K. Humphrey, H.B. Barlow, D.M. MacKay, B.D. Josephson, M. Roth, V.S. Ramachandran, S. Padfield, and (editorial summary only) E. Noakes. A scanned pdf is available from this web site (philpapers.org), while alternative versions more suitable for copying text are available from https://www.repository.cam.ac.uk/handle/1810/245189. -/- Page numbering convention for the pdf version (...) viewed in a pdf viewer is as follows: 'go to page n' accesses the pair of scanned pages 2n and 2n+1. Applicable licence: CC Attribution-NonCommercial-ShareAlike 2.0. (shrink)
David Bohm suggested that some kind of implicate order underlies the manifest order observed in physical systems, while others have suggested that some kind of mind-like process underlies this order. In the following a more explicit picture is proposed, based on the existence of parallels between spontaneously fluctuating equilibrium states and life processes. Focus on the processes of natural language suggests a picture involving an evolving ensemble of experts, each with its own goals but nevertheless acting in harmony with each (...) other. The details of how such an ensemble might function and evolve can translate into aspects of the world of fundamental physics such as symmetry and symmetry breaking, and can be expected to be the source of explicit models. This picture differs from that of regular physics in that goal-directedness has an important role to play, contrasting with that of the conventional view which implies a meaningless universe. (shrink)
This paper examines the processes involved in attempting to capture the subtlest aspects of nature by the scientific method and argues on this basis that nature is fundamentally elusive and may resist grasping by the methods of science. If we wish to come to terms with this resistance, then a shift in the direction of taking direct experience into account may be necessary for science’s future complete development.
The following progress report views language acquisition as primarily the attempt to create processes that connect together in a fruitful way linguistic input and other activity. The representations made of linguistic input are thus those that are optimally effective in mediating such interconnections. An effective Language Acquisition Device should contain mechanisms specific to the task of creating the desired interconnection processes in the linguistic environment in which the language learner finds himself or herself. Analysis of this requirement gives clear indications (...) as to what these mechanisms may be. (shrink)
We present an account of the phenomenon of music based upon the hypothesis that there is a close parallel between the mechanics of life and the mechanics of mind, a key factor in the correspondence proposed being the existence of close parallels between the concepts of gene and musical idea. The hypothesis accounts for the specificity, complexity, functionality and apparent arbitrariness of musical structures. An implication of the model is that music should be seen as a phenomenon of transcendental character, (...) involving aspects of mind as yet unstudied by conventional science. (shrink)
The file on this site provides the slides for a lecture given in Hangzhou in May 2018, and the lecture itself is available at the URL beginning 'sms' in the set of links provided in connection with this item. -/- It is commonly assumed that regular physics underpins biology. Here it is proposed, in a synthesis of ideas by various authors, that in reality structures and mechanisms of a biological character underpin the world studied by physicists, in principle supplying detail (...) in the domain that according to regular physics is of an indeterminate character. In regular physics mathematical equations are primary, but this constraint leads to problems with reconciling theory and reality. Biology on the other hand typically does not characterise nature in quantitative terms, instead investigating in detail important complex interrelationships between parts, leading to an understanding of the systems concerned that is in some respects beyond that which prevails in regular physics. It makes contact with quantum physics in various ways, for example in that both involve interactions between observer and observed, an insight that explains what is special about processes involving observation, justifying in the quantum physics context the replacement of the unphysical many-worlds picture by one involving collapse. The link with biology furthermore clarifies Wheeler’s suggestion that a multiplicity of observations can lead to the ‘fabrication of form’, including the insight that this process depends on very specific ‘structures with power’ related to the 'semiotic scaffolding' of the application of sign theory to biology known as biosemiotics. -/- The observer-observed 'circle' of Wheeler and Yardley is a special case of a more general phenomenon, oppositional dynamics, related to the 'intra-action' of Barad's Agential Realism, involving cooperating systems such as mind and matter, abstract and concrete, observer and observed, that preserve their identities while interacting with one another in such a way as to act as a unit. A third system may also be involved, the mediating system of Peirce linking the two together. Such a situation of changing connections and separations may plausibly lead in the future to an understanding of how complex systems are able to evolve to produce 'life, the universe and everything'. -/- (Added 1 July 2018) The general structure proposed here as an alternative to a mathematics-based physics can be usefully characterised by relating it to different disciplines and the specialised concepts utilised therein. In theoretical physics, the test for the correctness of a theory typically involves numerical predictions, corresponding to which theories are expressed in terms of equations, that is to say assertions that two quantities have identical values. Equations have a lesser significance in biology which typically talks in terms of functional mechanisms, dependent for example on details of chemistry and concepts such as genes, natural selection, signals and geometrical or topologically motivated concepts such as the interconnections between systems and the unfolding of DNA. Biosemiotics adds to this the concept of signs and their interpretation, implying novel concepts such as semiotic scaffolding and the semiosphere, code duality, and appreciation of the different types of signs, including symbols and their capacity for abstraction and use in language systems. Circular Theory adds to this picture, as do the ideas of Barad, considerations such as the idea of oppositional dynamics. The proposals in this lecture can be regarded as the idea that concepts such as those deriving from biosemiotics have more general applicability than just conventional biology and may apply, in some circumstances, to nonlinear systems generally, including the domain new to science hypothesised to underlie the phenomena of present-day physics. -/- The task then has to be to restore the mathematical aspect presumed, in this picture, not to be fundamental as it is in conventional theory. Deacon has invoked a complex sequence of evolutionary steps to account for the emergence over time of human language systems, and correspondingly mathematical behaviour can be subsumed under the general evolutionary mechanisms of biosemiotics (cf. also the proposals of Davis and Hersh regarding the nature of mathematics), so that the mathematical behaviour of physical systems is consistent with the proposed scheme. In conclusion, it is suggested that theoretical physicists should cease expecting to find some universal mathematical ‘theory of everything’, and focus instead on understanding in more detail complex systems exhibiting behaviour of a biological character, extending existing understanding. This may in time provide a more fruitful understanding of the natural world than does the regular approach. The essential concepts have an observational basis from both biology and the little-known discipline of cymatics (a discipline concerned with the remarkable patterns that specific waveforms can give rise to), while again computer simulations also offer promise in providing insight into the complex behaviours involved in the above proposals. -/- References -/- Jesper Hoffmeyer, Semiotic Scaffolding of Living Systems. Commens, a Digital Companion to C. S. Peirce (on Commens web site). Terrence Deacon, The Symbolic Species, W.W. Norton & Co. Karen Barad, Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning, Duke University Press. Philip Davis and Reuben Hersh, The Mathematical Experience, Penguin. Ilexa Yardley, Circular Theory. (shrink)
The mainstream view of meaning is that it is emergent, not fundamental, but some have disputed this, asserting that there is a more fundamental level of reality than that addressed by current physical theories, and that matter and meaning are in some way entangled. In this regard there are intriguing parallels between the quantum and biological domains, suggesting that there may be a more fundamental level underlying both. I argue that the organisation of this fundamental level is already to a (...) considerable extent understood by biosemioticians, who have fruitfully integrated Peirce’s sign theory into biology; things will happen there resembling what happens with familiar life, but the agencies involved will differ in ways reflecting their fundamentality, in other words they will be less complex, but still have structures complex enough for what they have to do. According to one approach involving a collaboration with which I have been involved, a part of what they have to do, along with the need to survive and reproduce, is to stop situations becoming too chaotic, a concept that accords with familiar ‘edge of chaos’ ideas. Such an extension of sign theory (semiophysics?) needs to be explored by physicists, possible tools being computational models, existing insights into complexity, and dynamical systems theory. Such a theory will not be mathematical in the same way that conventional physics theories are mathematical: rather than being foundational, mathematics will be ‘something that life does’, something that sufficiently evolved life does because in the appropriate context so doing is of value to life. (shrink)
The slides of a talk given at the Cavendish Laboratory in 2001, relating brain function to concepts such as hyperstructure theory (Baas), Memory Evolutive Systems (Ehresmann), and representational redescription (A Karmiloff-Smith).
(v.3) In this paper it is argued that Barad's Agential Realism, an approach to quantum mechanics originating in the philosophy of Niels Bohr, can be the basis of a 'theory of everything' consistent with a proposal of Wheeler that 'observer-participancy is the foundation of everything'. On the one hand, agential realism can be grounded in models of self- organisation such as the hypercycles of Eigen, while on the other agential realism, by virtue of the 'discursive practices' that constitute one aspect (...) of the theory, implies the possibility of the generation of physical phenomena through acts of specification originating at a more fundamental level. This kind of order stems from the association of persisting structures with special mechanisms for sustaining such structures. Included in phenomena that may be generated by these mechanisms are the origin and evolution of life, and human capacities such as mathematical and musical intuition. (shrink)
Human skills are acquired not by a single uniform process, but in a series of stages, as Piaget has shown. We have investigated such a sequential process by taking as an illustrative example the game of table tennis. The aims in each stage of learning are qualitatively different, and we show in detail how knowledge gained during one stage provides essential information for subsequent stages. Conclusions are drawn which may be important for artificial intelligence work generally. The question of practical (...) implementation of a system such as discussed is considered briefly. (shrink)
It is argued that cognitive capacities can be understood as the outcome of the collective action of a set of agents created by tools that explore possible behaviours and train the agents to behave in such appropriate ways as may be discovered. The coherence of the whole system is assured by a combination of vetting the performance of new agents and dealing appropriately with any faults that the whole system may develop. This picture is shown to account for a range (...) of cognitive capacities, including language. -/- Paper presented at the ECHO IV conference, Odense, Denmark, July 31 – Aug 4, 2000. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.