Results for 'POLYHEDRA'

5 found
Order:
  1. Word choice in mathematical practice: a case study in polyhedra.Lowell Abrams & Landon D. C. Elkind - 2019 - Synthese (4):1-29.
    We examine the influence of word choices on mathematical practice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach between Grünbaum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. subregular tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Preattentive recovery of three-dimensional orientation from line drawings.James T. Enns & Ronald A. Rensink - 1991 - Psychological Review 98 (3):335-351.
    It has generally been assumed that rapid visual search is based on simple features and that spatial relations between features are irrelevant for this task. Seven experiments involving search for line drawings contradict this assumption; a major determinant of search is the presence of line junctions. Arrow- and Y-junctions were detected rapidly in isolation and when they were embedded in drawings of rectangular polyhedra. Search for T-junctions was considerably slower. Drawings containing T-junctions often gave rise to very slow search (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  4. Polyhedral Completeness of Intermediate Logics: The Nerve Criterion.Sam Adam-day, Nick Bezhanishvili, David Gabelaia & Vincenzo Marra - 2024 - Journal of Symbolic Logic 89 (1):342-382.
    We investigate a recently devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. The first main result of this paper is a necessary and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart (eds.), Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The great French mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark