Switch to: References

Citations of:

Observations on Sick Mathematics

In Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.), Philosophical Perspectives on Mathematical Practice. College Publications. pp. 269--300 (2010)

Add citations

You must login to add citations.
  1. Epistemic injustice in mathematics.Colin Jakob Rittberg, Fenner Stanley Tanswell & Jean Paul Van Bendegem - 2020 - Synthese 197 (9):3875-3904.
    We investigate how epistemic injustice can manifest itself in mathematical practices. We do this as both a social epistemological and virtue-theoretic investigation of mathematical practices. We delineate the concept both positively—we show that a certain type of folk theorem can be a source of epistemic injustice in mathematics—and negatively by exploring cases where the obstacles to participation in a mathematical practice do not amount to epistemic injustice. Having explored what epistemic injustice in mathematics can amount to, we use the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proofs, Mathematical Practice and Argumentation.Begoña Carrascal - 2015 - Argumentation 29 (3):305-324.
    In argumentation studies, almost all theoretical proposals are applied, in general, to the analysis and evaluation of argumentative products, but little attention has been paid to the creative process of arguing. Mathematics can be used as a clear example to illustrate some significant theoretical differences between mathematical practice and the products of it, to differentiate the distinct components of the arguments, and to emphasize the need to address the different types of argumentative discourse and argumentative situation in the practice. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rationale of the Mathematical Joke.Andrew Aberdein - 2010 - In Alison Pease, Markus Guhe & Alan Smaill (eds.), Proceedings of AISB 2010 Symposium on Mathematical Practice and Cognition. AISB. pp. 1-6.
    A widely circulated list of spurious proof types may help to clarify our understanding of informal mathematical reasoning. An account in terms of argumentation schemes is proposed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indeterminacy, coincidence, and “Sourcing Newness” in mathematical research.James V. Martin - 2022 - Synthese 200 (1):1-23.
    Far from being unwelcome or impossible in a mathematical setting, indeterminacy in various forms can be seen as playing an important role in driving mathematical research forward by providing “sources of newness” in the sense of Hutter and Farías :434–449, 2017). I argue here that mathematical coincidences, phenomena recently under discussion in the philosophy of mathematics, are usefully seen as inducers of indeterminacy and as put to work in guiding mathematical research. I suggest that to call a pair of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation