- Proof Theory and Meaning.B. G. Sundholm - unknowndetails
|
|
A brief introduction to algebraic set theory.Steve Awodey - 2008 - Bulletin of Symbolic Logic 14 (3):281-298.details
|
|
The axiom of choice.John L. Bell - 2008 - Stanford Encyclopedia of Philosophy.details
|
|
Mathematical proof theory in the light of ordinal analysis.Reinhard Kahle - 2002 - Synthese 133 (1/2):237 - 255.details
|
|
Concepts and aims of functional interpretations: Towards a functional interpretation of constructive set theory.Wolfgang Burr - 2002 - Synthese 133 (1-2):257 - 274.details
|
|
Interpreting classical theories in constructive ones.Jeremy Avigad - 2000 - Journal of Symbolic Logic 65 (4):1785-1812.details
|
|
Relating first-order set theories and elementary toposes.Steve Awodey, Carsten Butz & Alex Simpson - 2007 - Bulletin of Symbolic Logic 13 (3):340-358.details
|
|
Generalizing realizability and Heyting models for constructive set theory.Albert Ziegler - 2012 - Annals of Pure and Applied Logic 163 (2):175-184.details
|
|
Constructive toposes with countable sums as models of constructive set theory.Alex Simpson & Thomas Streicher - 2012 - Annals of Pure and Applied Logic 163 (10):1419-1436.details
|
|
Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.details
|
|
Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.details
|
|
The Limits of Computation.Andrew Powell - 2022 - Axiomathes 32 (6):991-1011.details
|
|
Does Choice Really Imply Excluded Middle? Part II: Historical, Philosophical, and Foundational Reflections on the Goodman–Myhill Result†.Neil Tennant - 2021 - Philosophia Mathematica 29 (1):28-63.details
|
|
Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.details
|
|
The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).details
|
|
A meaning explanation for HoTT.Dimitris Tsementzis - 2020 - Synthese 197 (2):651-680.details
|
|
A new model construction by making a detour via intuitionistic theories II: Interpretability lower bound of Feferman's explicit mathematics T 0.Kentaro Sato - 2015 - Annals of Pure and Applied Logic 166 (7-8):800-835.details
|
|
Binary Refinement Implies Discrete Exponentiation.Peter Aczel, Laura Crosilla, Hajime Ishihara, Erik Palmgren & Peter Schuster - 2006 - Studia Logica 84 (3):361-368.details
|
|
Proof-theoretic conservations of weak weak intuitionistic constructive set theories.Lev Gordeev - 2013 - Annals of Pure and Applied Logic 164 (12):1274-1292.details
|
|
CZF does not have the existence property.Andrew W. Swan - 2014 - Annals of Pure and Applied Logic 165 (5):1115-1147.details
|
|
Replacement versus collection and related topics in constructive Zermelo–Fraenkel set theory.Michael Rathjen - 2005 - Annals of Pure and Applied Logic 136 (1-2):156-174.details
|
|
Independence results around constructive ZF.Robert S. Lubarsky - 2005 - Annals of Pure and Applied Logic 132 (2-3):209-225.details
|
|
Functional interpretation of Aczel's constructive set theory.Wolfgang Burr - 2000 - Annals of Pure and Applied Logic 104 (1-3):31-73.details
|
|
Inaccessibility in constructive set theory and type theory.Michael Rathjen, Edward R. Griffor & Erik Palmgren - 1998 - Annals of Pure and Applied Logic 94 (1-3):181-200.details
|
|
Type theories, toposes and constructive set theory: predicative aspects of AST.Ieke Moerdijk & Erik Palmgren - 2002 - Annals of Pure and Applied Logic 114 (1-3):155-201.details
|
|
Quotient topologies in constructive set theory and type theory.Hajime Ishihara & Erik Palmgren - 2006 - Annals of Pure and Applied Logic 141 (1):257-265.details
|
|
CZF and second order arithmetic.Robert S. Lubarsky - 2006 - Annals of Pure and Applied Logic 141 (1):29-34.details
|
|
Aspects of general topology in constructive set theory.Peter Aczel - 2006 - Annals of Pure and Applied Logic 137 (1-3):3-29.details
|
|
Characterizing the interpretation of set theory in Martin-Löf type theory.Michael Rathjen & Sergei Tupailo - 2006 - Annals of Pure and Applied Logic 141 (3):442-471.details
|
|
Non-well-founded trees in categories.Benno van den Berg & Federico De Marchi - 2007 - Annals of Pure and Applied Logic 146 (1):40-59.details
|
|
Aspects of predicative algebraic set theory I: Exact Completion.Benno van den Berg & Ieke Moerdijk - 2008 - Annals of Pure and Applied Logic 156 (1):123-159.details
|
|
The strength of extensionality I—weak weak set theories with infinity.Kentaro Sato - 2009 - Annals of Pure and Applied Logic 157 (2-3):234-268.details
|
|
Full operational set theory with unbounded existential quantification and power set.Gerhard Jäger - 2009 - Annals of Pure and Applied Logic 160 (1):33-52.details
|
|
On the T 1 axiom and other separation properties in constructive point-free and point-set topology.Peter Aczel & Giovanni Curi - 2010 - Annals of Pure and Applied Logic 161 (4):560-569.details
|
|
Derived rules for predicative set theory: an application of sheaves.Benno van den Berg & Ieke Moerdijk - 2012 - Annals of Pure and Applied Logic 163 (10):1367-1383.details
|
|
A predicative completion of a uniform space.Josef Berger, Hajime Ishihara, Erik Palmgren & Peter Schuster - 2012 - Annals of Pure and Applied Logic 163 (8):975-980.details
|
|
The uniform boundedness theorem and a boundedness principle.Hajime Ishihara - 2012 - Annals of Pure and Applied Logic 163 (8):1057-1061.details
|
|
From the weak to the strong existence property.Michael Rathjen - 2012 - Annals of Pure and Applied Logic 163 (10):1400-1418.details
|
|
Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory.Ray-Ming Chen & Michael Rathjen - 2012 - Archive for Mathematical Logic 51 (7-8):789-818.details
|
|
Inaccessible set axioms may have little consistency strength.L. Crosilla & M. Rathjen - 2002 - Annals of Pure and Applied Logic 115 (1-3):33-70.details
|
|
A generalized cut characterization of the fullness axiom in CZF.Laura Crosilla, Erik Palmgren & Peter Schuster - 2013 - Logic Journal of the IGPL 21 (1):63-76.details
|
|
Proof-relevance of families of setoids and identity in type theory.Erik Palmgren - 2012 - Archive for Mathematical Logic 51 (1-2):35-47.details
|
|
Constructivist and structuralist foundations: Bishop’s and Lawvere’s theories of sets.Erik Palmgren - 2012 - Annals of Pure and Applied Logic 163 (10):1384-1399.details
|
|
Realizability and intuitionistic logic.J. Diller & A. S. Troelstra - 1984 - Synthese 60 (2):253 - 282.details
|
|
Towards a new philosophy of mathematics.Moshe Machover - 1983 - British Journal for the Philosophy of Science 34 (1):1-11.details
|
|
Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.details
|
|
Inferences by Parallel Reasoning in Islamic Jurisprudence: Al-Shīrāzī’s Insights Into the Dialectical Constitution of Meaning and Knowledge.Shahid Rahman, Muhammad Iqbal & Youcef Soufi - 2019 - Cham, Switzerland: Springer Verlag.details
|
|
Immanent Reasoning or Equality in Action: A Plaidoyer for the Play Level.Nicolas Clerbout, Ansten Klev, Zoe McConaughey & Shahid Rahman - 2018 - Cham, Switzerland: Springer Verlag.details
|
|
Recursive models for constructive set theories.M. Beeson - 1982 - Annals of Mathematical Logic 23 (2-3):127-178.details
|
|
Computational adequacy for recursive types in models of intuitionistic set theory.Alex Simpson - 2004 - Annals of Pure and Applied Logic 130 (1-3):207-275.details
|
|