Switch to: References

Add citations

You must login to add citations.
  1. Predicting Tumor Category Using Artificial Neural Networks.Ibrahim M. Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (2):1-7.
    In this paper an Artificial Neural Network (ANN) model, for predicting the category of a tumor was developed and tested. Taking patients’ tests, a number of information gained that influence the classification of the tumor. Such information as age, sex, histologic-type, degree-of-diffe, status of bone, bone-marrow, lung, pleura, peritoneum, liver, brain, skin, neck, supraclavicular, axillar, mediastinum, and abdominal. They were used as input variables for the ANN model. A model based on the Multilayer Perceptron Topology was established and trained using (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Energy Efficiency Prediction using Artificial Neural Network.Ahmed J. Khalil, Alaa M. Barhoom, Bassem S. Abu-Nasser, Musleh M. Musleh & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (9):1-7.
    Buildings energy consumption is growing gradually and put away around 40% of total energy use. Predicting heating and cooling loads of a building in the initial phase of the design to find out optimal solutions amongst different designs is very important, as ell as in the operating phase after the building has been finished for efficient energy. In this study, an artificial neural network model was designed and developed for predicting heating and cooling loads of a building based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Glass Classification Using Artificial Neural Network.Mohmmad Jamal El-Khatib, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31.
    As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Tic-Tac-Toe Learning Using Artificial Neural Networks.Mohaned Abu Dalffa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-19.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Fraudulent Financial Transactions Detection Using Machine Learning.Mosa M. M. Megdad, Samy S. Abu-Naser & Bassem S. Abu-Nasser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):30-39.
    It is crucial to actively detect the risks of transactions in a financial company to improve customer experience and minimize financial loss. In this study, we compare different machine learning algorithms to effectively and efficiently predict the legitimacy of financial transactions. The algorithms used in this study were: MLP Repressor, Random Forest Classifier, Complement NB, MLP Classifier, Gaussian NB, Bernoulli NB, LGBM Classifier, Ada Boost Classifier, K Neighbors Classifier, Logistic Regression, Bagging Classifier, Decision Tree Classifier and Deep Learning. The dataset (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.
    Artificial intelligence (AI), deep learning, machine learning and neural networks represent extremely exciting and powerful machine learning-based techniques used to solve many real-world problems. Artificial intelligence is the branch of computer sciences that emphasizes the development of intelligent machines, thinking and working like humans. For example, recognition, problem-solving, learning, visual perception, decision-making and planning. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Deep learning (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Advancements in AI for Medical Imaging: Transforming Diagnosis and Treatment.Zakaria K. D. Alkayyali, Ashraf M. H. Taha, Qasem M. M. Zarandah, Bassem S. Abunasser, Alaa M. Barhoom & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (8):8-15.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging represents a transformative shift in healthcare, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. This paper explores the application of AI technologies in the analysis of medical images, focusing on techniques such as convolutional neural networks (CNNs) and deep learning models. We discuss how these technologies are applied to various imaging modalities, including X-rays, MRIs, and CT scans, to enhance disease detection, image segmentation, and diagnostic support. Additionally, the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Evolution of AI in Autonomous Systems: Innovations, Challenges, and Future Prospects.Ashraf M. H. Taha, Zakaria K. D. Alkayyali, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):1-7.
    Abstract: The rapid advancement of artificial intelligence (AI) has catalyzed significant developments in autonomous systems, which are increasingly shaping diverse sectors including transportation, robotics, and industrial automation. This paper explores the evolution of AI technologies that underpin these autonomous systems, focusing on their capabilities, applications, and the challenges they present. Key areas of discussion include the technological innovations driving autonomy, such as machine learning algorithms and sensor integration, and the practical implementations observed in autonomous vehicles, drones, and robotic systems. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Classification of Alzheimer's Disease Using Convolutional Neural Networks.Lamis F. Samhan, Amjad H. Alfarra & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (3):18-23.
    Brain-related diseases are among the most difficult diseases due to their sensitivity, the difficulty of performing operations, and their high costs. In contrast, the operation is not necessary to succeed, as the results of the operation may be unsuccessful. One of the most common diseases that affect the brain is Alzheimer’s disease, which affects adults, a disease that leads to memory loss and forgetting information in varying degrees. According to the condition of each patient. For these reasons, it is important (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Gender Prediction from Retinal Fundus Using Deep Learning.Ashraf M. Taha, Qasem M. M. Zarandah, Bassem S. Abu-Nasser, Zakaria K. D. AlKayyali & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (5):57-63.
    Deep learning may transform health care, but model development has largely been dependent on availability of advanced technical expertise. The aim of this study is to develop a deep learning model to predict the gender from retinal fundus images. The proposed model was based on the Xception pre-trained model. The proposed model was trained on 20,000 retinal fundus images from Kaggle depository. The dataset was preprocessed them split into three datasets (training, validation, Testing). After training and cross-validating the proposed model, (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms.Alaa Barhoom, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):66-73.
    Abstract: Sarcasm is commonly used in news and detecting sarcasm in headline news is challenging for humans and thus for computers. The media regularly seem to engage sarcasm in their news headline to get the attention of people. However, people find it tough to detect the sarcasm in the headline news, hence receiving a mistaken idea about that specific news and additionally spreading it to their friends, colleagues, etc. Consequently, an intelligent system that is able to distinguish between can sarcasm (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Credit Score Classification Using Machine Learning.Mosa M. M. Megdad & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (5):1-10.
    Abstract: Ensuring the proactive detection of transaction risks is paramount for financial institutions, particularly in the context of managing credit scores. In this study, we compare different machine learning algorithms to effectively and efficiently. The algorithms used in this study were: MLogisticRegressionCV, ExtraTreeClassifier,LGBMClassifier,AdaBoostClassifier, GradientBoostingClassifier,Perceptron,RandomForestClassifier,KNeighborsClassifier,BaggingClassifier, DecisionTreeClassifier, CalibratedClassifierCV, LabelPropagation, Deep Learning. The dataset was collected from Kaggle depository. It consists of 164 rows and 8 columns. The best classifier with unbalanced dataset was the LogisticRegressionCV. The Accuracy 100.0%, precession 100.0%,Recall100.0% and the F1-score (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Classification of Rice Using Deep Learning.Mohammed H. S. Abueleiwa & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):26-36.
    Abstract: Rice is one of the most important staple crops in the world and serves as a staple food for more than half of the global population. It is a critical source of nutrition, providing carbohydrates, vitamins, and minerals to millions of people, particularly in Asia and Africa. This paper presents a study on using deep learning for the classification of different types of rice. The study focuses on five specific types of rice: Arborio, Basmati, Ipsala, Jasmine, and Karacadag. A (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fish Classification Using Deep Learning.M. N. Ayyad & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):51-58.
    Abstract: Fish are important for both nutritional and economic reasons. They are a good source of protein, vitamins, and minerals and play a significant role in human diets, especially in coastal and island communities. In addition, fishing and fish farming are major industries that provide employment and income for millions of people worldwide. Moreover, fish play a critical role in marine ecosystems, serving as prey for larger predators and helping to maintain the balance of aquatic food chains. Overall, fish play (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • AI-Driven Learning: Advances and Challenges in Intelligent Tutoring Systems.Amjad H. Alfarra, Lamis F. Amhan, Msbah J. Mosa, Mahmoud Ali Alajrami, Faten El Kahlout, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):24-29.
    Abstract: The incorporation of Artificial Intelligence (AI) into educational technology has dramatically transformed learning through Intelligent Tutoring Systems (ITS). These systems utilize AI to offer personalized, adaptive instruction tailored to each student's needs, thereby improving learning outcomes and engagement. This paper examines the development and impact of ITS, focusing on AI technologies such as machine learning, natural language processing, and adaptive algorithms that drive their functionality. Through various case studies and applications, it illustrates how ITS have revolutionized traditional educational methods (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Using Deep Learning to Classify Corn Diseases.Mohanad H. Al-Qadi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems (Ijaisr) 8 (4):81-88.
    Abstract: A corn crop typically refers to a large-scale cultivation of corn (also known as maize) for commercial purposes such as food production, animal feed, and industrial uses. Corn is one of the most widely grown crops in the world, and it is a major staple food for many cultures. Corn crops are grown in various regions of the world with different climates, soil types, and farming practices. In the United States, for example, the Midwest is known as the "Corn (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Classification of Chicken Diseases Using Deep Learning.Mohammed Al Qatrawi & Samy S. Abu-Naser - 2024 - Information Journal of Academic Information Systems Research (Ijaisr) 8 (4):9-17.
    Abstract: In recent years, the outbreak of various poultry diseases has posed a significant threat to the global poultry industry. Therefore, the accurate and timely detection of chicken diseases is critical to reduce economic losses and prevent the spread of diseases. In this study, we propose a method for classifying chicken diseases using a convolutional neural network (CNN). The proposed method involves preprocessing the chicken images, building and training a CNN model, and evaluating the performance of the model. The dataset (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fine-tuning MobileNetV2 for Sea Animal Classification.Mohammed Marouf & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):44-50.
    Abstract: Classifying sea animals is an important problem in marine biology and ecology as it enables the accurate identification and monitoring of species populations, which is crucial for understanding and protecting marine ecosystems. This paper addresses the problem of classifying 19 different sea animals using convolutional neural networks (CNNs). The proposed solution is to use a pretrained MobileNetV2 model, which is a lightweight and efficient CNN architecture, and fine-tune it on a dataset of sea animals. The results of the study (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Pistachio Variety Classification using Convolutional Neural Networks.Ahmed S. Sabah & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):113-119.
    Abstract: Pistachio nuts are a valuable source of nutrition and are widely cultivated for commercial purposes. The accurate classification of different pistachio varieties is important for quality control and market analysis. In this study, we propose a new model for the classification of different pistachio varieties using Convolutional Neural Networks (CNNs). We collected a dataset of pistachio images form Kaggle depository with two varieties (Kirmizi and Siirt). The images were then preprocessed and used to train a CNN model based on (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Classification of Apple Diseases Using Deep Learning.Ola I. A. Lafi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):1-9.
    Abstract: In this study, we explore the challenge of identifying and preventing diseases in apple trees, which is a popular activity but can be difficult due to the susceptibility of these trees to various diseases. To address this challenge, we propose the use of Convolutional Neural Networks, which have proven effective in automatically detecting plant diseases. To validate our approach, we use images of apple leaves, including Apple Rot Leaves, Leaf Blotch, Healthy Leaves, and Scab Leaves collected from Kaggle which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Classification of Dates Using Deep Learning.Raed Z. Sababa & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):18-25.
    Abstract: Dates are the fruit of date palm trees, and it is one of the fruits famous for its high nutritional value. It is a summer fruit spread in the Arab world. In the past, the Arabs relied on it in their daily lives. Dates take an oval shape and vary in size from 20 to 60 mm in length and 8 to 30 mm in diameter. The ripe fruit consists of a hard core surrounded by a papery cover called (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forest Fire Detection using Deep Leaning.Mosa M. M. Megdad & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):59-65.
    Abstract: Forests are areas with a high density of trees, and they play a vital role in the health of the planet. They provide a habitat for a wide variety of plant and animal species, and they help to regulate the climate by absorbing carbon dioxide from the atmosphere. While in 2010, the world had 3.92Gha of forest cover, covering 30% of its land area, in 2019, there was a loss of forest cover of 24.2Mha according to the Global Forest (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Fast Food Image Classification using Deep Learning.Jehad El-Tantawi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):37-43.
    Abstract: Fast food refers to quick, convenient, and ready-to-eat meals that are usually sold at chain restaurants or take-out establishments. Fast food is often criticized for its unhealthy ingredients, such as high levels of salt, sugar, and unhealthy fats, and its contribution to the growing obesity epidemic. Despite this, fast food remains popular due to its affordability, convenience, and widespread availability. Many fast food chains have attempted to respond to these criticisms by offering healthier options, such as salads and grilled (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using Deep Learning to Detect the Quality of Lemons.Mohammed B. Karaja & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):97-104.
    Abstract: Lemons are an important fruit that have a wide range of uses and benefits, from culinary to health to household and beauty applications. Deep learning techniques have shown promising results in image classification tasks, including fruit quality detection. In this paper, we propose a convolutional neural network (CNN)-based approach for detecting the quality of lemons by analysing visual features such as colour and texture. The study aims to develop and train a deep learning model to classify lemons based on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is a technique used (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Grape Leaf Species Classification Using CNN.Mohammed M. Almassri & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):66-72.
    Abstract: Context: grapevine leaves are an important agricultural product that is used in many Middle Eastern dishes. The species from which the grapevine leaf originates can differ in terms of both taste and price. Method: In this study, we build a deep learning model to tackle the problem of grape leaf classification. 500 images were used (100 for each species) that were then increased to 10,000 using data augmentation methods. Convolutional Neural Network (CNN) algorithms were applied to build this model (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Detection of Brain Tumor Using Deep Learning.Hamza Rafiq Almadhoun & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):29-47.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and reacts like humans, some of the computer activities with artificial intelligence are designed to include speech, recognition, learning, planning and problem solving. Deep learning is a collection of algorithms used in machine learning, it is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep learning is used as a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Tomato Leaf Diseases Classification using Deep Learning.Mohammed F. El-Habibi & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):73-80.
    Abstract: Tomatoes are among the most popular vegetables in the world due to their frequent use in many dishes, which fall into many varieties in common and traditional foods, and due to their rich ingredients such as vitamins and minerals, so they are frequently used on a daily basis, When we focus our attention on this vegetable, we must also focus and take into consideration the diseases that affect this vegetable, a deep learning model that classifies tomato diseases has been (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using Deep Learning to Classify Eight Tea Leaf Diseases.Mai R. Ibaid & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):89-96.
    Abstract: People all over the world have been drinking tea for thousands of centuries, and for good reason. Many types of teas can help you stay healthy by boosting your immune system, reducing inflammation, and even preventing cancer and heart disease. There is sufficient material to show that regularly consuming tea can improve your health over the long term. A deep learning model that categorizes tea disorders has been completed. When focusing on the tea, we must also focus on and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diagnosis of Blood Cells Using Deep Learning.Ahmed J. Khalil & Samy S. Abu-Naser - 2022 - Dissertation, University of Tehran
    In computer science, Artificial Intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Deep Learning is a new field of research. One of the branches of Artificial Intelligence Science deals with the creation of theories and algorithms that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Vegetable Classification Using Deep Learning.Mostafa El-Ghoul & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (4):105-112.
    Abstract: Vegetables are an essential component of a healthy diet and play a critical role in promoting overall health and well- being. Vegetables are rich in important vitamins and minerals, including vitamin C, folate, potassium, and iron. They also provide fiber, which helps maintain digestive health and prevent chronic diseases. We are proposing a deep learning model for the classification of vegetables. A dataset was collected from Kaggle depository for Vegetable with 15000 images for 15 different classes. The data was (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classification of A few Fruits Using Deep Learning.Mohammed Alkahlout, Samy S. Abu-Naser, Azmi H. Alsaqqa & Tanseem N. Abu-Jamie - 2022 - International Journal of Academic Engineering Research (IJAER) 5 (12):56-63.
    Abstract: Fruits are a rich source of energy, minerals and vitamins. They also contain fiber. There are many fruits types such as: Apple and pears, Citrus, Stone fruit, Tropical and exotic, Berries, Melons, Tomatoes and avocado. Classification of fruits can be used in many applications, whether industrial or in agriculture or services, for example, it can help the cashier in the hyper mall to determine the price and type of fruit and also may help some people to determining whether a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Papaya Maturity Classifications using Deep Convolutional Neural Networks.Marah M. Al-Masawabe, Lamis F. Samhan, Amjad H. AlFarra, Yasmeen E. Aslem & Samy S. Abu-Naser - 2021 - International Journal of Engineering and Information Systems (IJEAIS) 5 (12):60-67.
    Papaya is a tropical fruit with a green cover, yellow pulp, and a taste between mango and cantaloupe, having commercial importance because of its high nutritive and medicinal value. The process of sorting papaya fruit based on maturely is one of the processes that greatly determine the mature of papaya fruit that will be sold to consumers. The manual grading of papaya fruit based on human visual perception is time-consuming and destructive. The objective of this paper is to the status (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Classification of Sign-Language Using MobileNet - Deep Learning.Tanseem N. Abu-Jamie & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (7):29-40.
    Abstract: Sign language recognition is one of the most rapidly expanding fields of study today. Many new technologies have been developed in recent years in the fields of artificial intelligence the sign language-based communication is valuable to not only deaf and dumb community, but also beneficial for individuals suffering from Autism, downs Syndrome, Apraxia of Speech for correspondence. The biggest problem faced by people with hearing disabilities is the people's lack of understanding of their requirements. In this paper we try (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Classification of Sign-language Using VGG16.Tanseem N. Abu-Jamie & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (6):36-46.
    Sign Language Recognition (SLR) aims to translate sign language into text or speech in order to improve communication between deaf-mute people and the general public. This task has a large social impact, but it is still difficult due to the complexity and wide range of hand actions. We present a novel 3D convolutional neural network (CNN) that extracts discriminative spatial-temporal features from photo datasets. This article is about classification of sign languages are not universal and are usually not mutually intelligible (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Prediction of Heart Disease Using a Collection of Machine and Deep Learning Algorithms.Ali M. A. Barhoom, Abdelbaset Almasri, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2022 - International Journal of Engineering and Information Systems (IJEAIS) 6 (4):1-13.
    Abstract: Heart diseases are increasing daily at a rapid rate and it is alarming and vital to predict heart diseases early. The diagnosis of heart diseases is a challenging task i.e. it must be done accurately and proficiently. The aim of this study is to determine which patient is more likely to have heart disease based on a number of medical features. We organized a heart disease prediction model to identify whether the person is likely to be diagnosed with a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Classifications of Pineapple using Deep Learning.Amjad H. Alfarra, Lamis F. Samhan, Yasmin E. Aslem, Marah M. Almasawabe & Samy S. Abu-Naser - 2021 - International Journal of Academic Information Systems Research (IJAISR) 5 (12):37-41.
    A pineapple is a tropical plant with eatable leafy foods most monetarily critical plant in the family Bromeliaceous. The pineapple is native to South America, where it has been developed for a long time. The acquaintance of the pineapple with Europe in the seventeenth century made it a critical social symbol of extravagance. Since the 1820s, pineapple has been industrially filled in nurseries and numerous tropical manors. Further, it is the third most significant tropical natural product in world creation. In (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Classification of Age and Gender Using ResNet - Deep Learning.Aysha I. Mansour & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (8):20-29.
    Age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Even Nevertheless, contrast to the large performance improvements recently reported for the closely related task of audio. In this research, we show that performance on these tasks can be significantly improved by learning representations using deep convolutional neural networks (CNN). where we get in the ResNet the training accuracy was 98% ,validation accuracy 95%, testing accuracy 96% .Testing (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Retina Diseases Diagnosis Using Deep Learning.Abeer Abed ElKareem Fawzi Elsharif & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):11-37.
    There are many eye diseases but the most two common retinal diseases are Age-Related Macular Degeneration (AMD), which the sharp, central vision and a leading cause of vision loss among people age 50 and older, there are two types of AMD are wet AMD and DRUSEN. Diabetic Macular Edema (DME), which is a complication of diabetes caused by fluid accumulation in the macula that can affect the fovea. If it is left untreated it may cause vision loss. Therefore, early detection (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Age and Gender Classification Using Deep Learning - VGG16.Aysha I. Mansour & Samy S. Abu-Naser - 2022 - International Journal of Academic Information Systems Research (IJAISR) 6 (7):50-59.
    Abstract: Age and gender classification has been around for a long time, and efforts are still being made to improve the findings. This has been the case since the inception of social media platforms. Visible understanding has become more important in the computer vision society with the emergence of AI increase in performance and help train a model to achieve age and gender classification. Although these networks built for the mobile platform are not always as accurate as the larger, more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classification of Alzheimer’s Disease Using Traditional Classifiers with Pre-Trained CNN.Husam R. Almadhoun & Samy S. Abu-Naser - 2021 - International Journal of Academic Health and Medical Research (IJAHMR) 5 (4):17-21.
    Abstract: Alzheimer's disease (AD) is one of the most common types of dementia. Symptoms appear gradually and end with severe brain damage. People with Alzheimer's disease lose the abilities of knowledge, memory, language and learning. Recently, the classification and diagnosis of diseases using deep learning has emerged as an active topic covering a wide range of applications. This paper proposes examining abnormalities in brain structures and detecting cases of Alzheimer's disease especially in the early stages, using features derived from medical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Image-Based Classification of Date Types Using Convolutional Neural Networks.Abedeleilah S. A. Elmahmoum, Dina Alborno, Dalia Al Harazine & Samy S. Abu-Naser - 2025 - International Journal of Academic Information Systems Research (IJAISR) 3 (1):10-16.
    Abstract: This research focuses on the classification of nine varieties of dates using deep learning techniques. The study aims to develop an accurate and efficient model capable of identifying different types of dates based on images. A Convolutional Neural Network (CNN) was employed, trained on a dataset comprising thousands of date images, processed to enhance classification performance. The model was evaluated on multiple metrics, achieving high accuracy rates, demonstrating the feasibility of using deep learning in date classification. This approach can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicting Whether a Couple is Going to Get Divorced or Not Using Artificial Neural Networks.Ibrahim M. Nasser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (10):49-55.
    In this paper, an artificial neural network (ANN) model was developed and validated to predict whether a couple is going to get divorced or not. Prediction is done based on some questions that the couple answered, answers of those questions were used as the input to the ANN. The model went through multiple learning-validation cycles until it got 100% accuracy.
    Download  
     
    Export citation  
     
    Bookmark  
  • ANN for Parkinson’s Disease Prediction.Salah Sadek, Abdul Mohammed, Abdul Karim Abunbehan, Majed Abdul Ghattas & Mohamed Badawi - 2020 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):1-7.
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors in identifying (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ANN for Tic-Tac-Toe Learning.Dalffa Abu-Mohaned - 2020 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-17.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Machine Learning Application to Predict The Quality of Watermelon Using JustNN.Ibrahim M. Nasser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (10):1-8.
    In this paper, a predictive artificial neural network (ANN) model was developed and validated for the purpose of prediction whether a watermelon is good or bad, the model was developed using JUSTNN software environment. Prediction is done based on some watermelon attributes that are chosen to be input data to the ANN. Attributes like color, density, sugar rate, and some others. The model went through multiple learning-validation cycles until the error is zero, so the model is 100% percent accurate for (...)
    Download  
     
    Export citation  
     
    Bookmark