Switch to: References

Add citations

You must login to add citations.
  1. A Note on Synonymy in Proof-Theoretic Semantics.Heinrich Wansing - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 339-362.
    The topic of identity of proofs was put on the agenda of general (or structural) proof theory at an early stage. The relevant question is: When are the differences between two distinct proofs (understood as linguistic entities, proof figures) of one and the same formula so inessential that it is justified to identify the two proofs? The paper addresses another question: When are the differences between two distinct formulas so inessential that these formulas admit of identical proofs? The question appears (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wansing's bi-intuitionistic logic: semantics, extension and unilateralisation.Juan C. Agudelo-Agudelo - 2024 - Journal of Applied Non-Classical Logics 34 (1):31-54.
    The well-known algebraic semantics and topological semantics for intuitionistic logic (Int) is here extended to Wansing's bi-intuitionistic logic (2Int). The logic 2Int is also characterised by a quasi-twist structure semantics, which leads to an alternative topological characterisation of 2Int. Later, notions of Fregean negation and of unilateralisation are proposed. The logic 2Int is extended with a ‘Fregean negation’ connective ∼, obtaining 2Int∼, and it is showed that the logic N4⋆ (an extension of Nelson's paraconsistent logic) results to be the unilateralisation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Double Negation as Minimal Negation.Satoru Niki - 2023 - Journal of Logic, Language and Information 32 (5):861-886.
    N. Kamide introduced a pair of classical and constructive logics, each with a peculiar type of negation: its double negation behaves as classical and intuitionistic negation, respectively. A consequence of this is that the systems prove contradictions but are non-trivial. The present paper aims at giving insights into this phenomenon by investigating subsystems of Kamide’s logics, with a focus on a system in which the double negation behaves as the negation of minimal logic. We establish the negation inconsistency of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Simple Way to Overcome Hyperconnexivity.Alex Belikov - 2023 - Studia Logica 112 (1):69-94.
    The term ‘hyperconnexive logic’ (or ‘hyperconnexivity’ in general) in relation to a certain logical system was coined by Sylvan to indicate that not only do Boethius’ theses hold in such a system, but also their converses. The plausibility of the latter was questioned by some connexive logicians. Without going into the discussion regarding the plausibility of hyperconnexivity and the converses of Boethius’ theses, this paper proposes a quite simple way to escape the hyperconnexivity within the semantic framework of Wansing-style constructive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Refutation-Aware Gentzen-Style Calculi for Propositional Until-Free Linear-Time Temporal Logic.Norihiro Kamide - 2023 - Studia Logica 111 (6):979-1014.
    This study introduces refutation-aware Gentzen-style sequent calculi and Kripke-style semantics for propositional until-free linear-time temporal logic. The sequent calculi and semantics are constructed on the basis of the refutation-aware setting for Nelson’s paraconsistent logic. The cut-elimination and completeness theorems for the proposed sequent calculi and semantics are proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Negation in Negationless Intuitionistic Mathematics.Thomas Macaulay Ferguson - 2023 - Philosophia Mathematica 31 (1):29-55.
    The mathematician G.F.C. Griss is known for his program of negationless intuitionistic mathematics. Although Griss’s rejection of negation is regarded as characteristic of his philosophy, this is a consequence of an executability requirement that mental constructions presuppose agents’ executing corresponding mental activity. Restoring Griss’s executability requirement to a central role permits a more subtle characterization of the rejection of negation, according to which D. Nelson’s strong constructible negation is compatible with Griss’s principles. This exposes a ‘holographic’ theory of negation in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Extended Paradefinite Logic Combining Conflation, Paraconsistent Negation, Classical Negation, and Classical Implication: How to Construct Nice Gentzen-type Sequent Calculi.Norihiro Kamide - 2022 - Logica Universalis 16 (3):389-417.
    In this study, an extended paradefinite logic with classical negation (EPLC), which has the connectives of conflation, paraconsistent negation, classical negation, and classical implication, is introduced as a Gentzen-type sequent calculus. The logic EPLC is regarded as a modification of Arieli, Avron, and Zamansky’s ideal four-valued paradefinite logic (4CC) and as an extension of De and Omori’s extended Belnap–Dunn logic with classical negation (BD+) and Avron’s self-extensional four-valued paradefinite logic (SE4). The completeness, cut-elimination, and decidability theorems for EPLC are proved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • First-order Logics of Evidence and Truth with Constant and Variable Domains.Abilio Rodrigues & Henrique Antunes - 2022 - Logica Universalis 16 (3):419-449.
    The main aim of this paper is to introduce first-order versions of logics of evidence and truth, together with corresponding sound and complete Kripke semantics with variable and constant domains. According to the intuitive interpretation proposed here, these logics intend to represent possibly inconsistent and incomplete information bases over time. The paper also discusses the connections between Belnap-Dunn’s and da Costa’s approaches to paraconsistency, and argues that the logics of evidence and truth combine them in a very natural way.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • One Heresy and One Orthodoxy: On Dialetheism, Dimathematism, and the Non-normativity of Logic.Heinrich Wansing - 2024 - Erkenntnis 89 (1):181-205.
    In this paper, Graham Priest’s understanding of dialetheism, the view that there exist true contradictions, is discussed, and various kinds of metaphysical dialetheism are distinguished between. An alternative to dialetheism is presented, namely a thesis called ‘dimathematism’. It is pointed out that dimathematism enables one to escape a slippery slope argument for dialetheism that has been put forward by Priest. Moreover, dimathematism is presented as a thesis that is helpful in rejecting the claim that logic is a normative discipline.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The nature of entailment: an informational approach.Yaroslav Shramko & Heinrich Wansing - 2019 - Synthese 198 (S22):5241-5261.
    In this paper we elaborate a conception of entailment based on what we call the Ackermann principle, which explicates valid entailment through a logical connection between sentences depending on their informational content. We reconstruct Dunn’s informational semantics for entailment on the basis of Restall’s approach, with assertion and denial as two independent speech acts, by introducing the notion of a ‘position description’. We show how the machinery of position descriptions can effectively be used to define the positive and the negative (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Falsification-Aware Semantics and Sequent Calculi for Classical Logic.Norihiro Kamide - 2021 - Journal of Philosophical Logic 51 (1):99-126.
    In this study, falsification-aware semantics and sequent calculi for first-order classical logic are introduced and investigated. These semantics and sequent calculi are constructed based on a falsification-aware setting for first-order Nelson constructive three-valued logic. In fact, these semantics and sequent calculi are regarded as those for a classical variant of N3. The completeness and cut-elimination theorems for the proposed semantics and sequent calculi are proved using Schütte’s method. Similar results for the propositional case are also obtained.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Neighbourhood Semantics for FDE-Based Modal Logics.S. Drobyshevich & D. Skurt - 2021 - Studia Logica 109 (6):1273-1309.
    We investigate some non-normal variants of well-studied paraconsistent and paracomplete modal logics that are based on N. Belnap’s and M. Dunn’s four-valued logic. Our basic non-normal modal logics are characterized by a weak extensionality rule, which reflects the four-valued nature of underlying logics. Aside from introducing our basic framework of bi-neighbourhood semantics, we develop a correspondence theory in order to prove completeness results with respect to our neighbourhood semantics for non-normal variants of \, \ and \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Alternative Multilattice Logics: An Approach Based on Monosequent and Indexed Monosequent Calculi.Norihiro Kamide - 2021 - Studia Logica 109 (6):1241-1271.
    Two new multilattice logics called submultilattice logic and indexed multilattice logic are introduced as a monosequent calculus and an indexed monosequent calculus, respectively. The submultilattice logic is regarded as a monosequent calculus version of Shramko’s original multilattice logic, which is also known as the logic of logical multilattices. The indexed multilattice logic is an extension of the submultilattice logic, and is regarded as the logic of multilattices. A completeness theorem with respect to a lattice-valued semantics is proved for the submultilattice (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semantics for Pure Theories of Connexive Implication.Yale Weiss - 2022 - Review of Symbolic Logic 15 (3):591-606.
    In this article, I provide Urquhart-style semilattice semantics for three connexive logics in an implication-negation language (I call these “pure theories of connexive implication”). The systems semantically characterized include the implication-negation fragment of a connexive logic of Wansing, a relevant connexive logic recently developed proof-theoretically by Francez, and an intermediate system that is novel to this article. Simple proofs of soundness and completeness are given and the semantics is used to establish various facts about the systems (e.g., that two of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Routley Star and Hyperintensionality.Sergei Odintsov & Heinrich Wansing - 2020 - Journal of Philosophical Logic 50 (1):33-56.
    We compare the logic HYPE recently suggested by H. Leitgeb as a basic propositional logic to deal with hyperintensional contexts and Heyting-Ockham logic introduced in the course of studying logical aspects of the well-founded semantics for logic programs with negation. The semantics of Heyting-Ockham logic makes use of the so-called Routley star negation. It is shown how the Routley star negation can be obtained from Dimiter Vakarelov’s theory of negation and that propositional HYPE coincides with the logic characterized by the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Kripke-Completeness and Cut-elimination Theorems for Intuitionistic Paradefinite Logics With and Without Quasi-Explosion.Norihiro Kamide - 2020 - Journal of Philosophical Logic 49 (6):1185-1212.
    Two intuitionistic paradefinite logics N4C and N4C+ are introduced as Gentzen-type sequent calculi. These logics are regarded as a combination of Nelson’s paraconsistent four-valued logic N4 and Wansing’s basic constructive connexive logic C. The proposed logics are also regarded as intuitionistic variants of Arieli, Avron, and Zamansky’s ideal paraconistent four-valued logic 4CC. The logic N4C has no quasi-explosion axiom that represents a relationship between conflation and paraconsistent negation, but the logic N4C+ has this axiom. The Kripke-completeness and cut-elimination theorems for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-involutive twist-structures.Umberto Rivieccio, Paulo Maia & Achim Jung - 2020 - Logic Journal of the IGPL 28 (5):973-999.
    A recent paper by Jakl, Jung and Pultr succeeded for the first time in establishing a very natural link between bilattice logic and the duality theory of d-frames and bitopological spaces. In this paper we further exploit, extend and investigate this link from an algebraic and a logical point of view. In particular, we introduce classes of algebras that extend bilattices, d-frames and N4-lattices to a setting in which the negation is not necessarily involutive, and we study corresponding logics. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gentzen-Type Sequent Calculi for Extended Belnap–Dunn Logics with Classical Negation: A General Framework.Norihiro Kamide - 2019 - Logica Universalis 13 (1):37-63.
    Gentzen-type sequent calculi GBD+, GBDe, GBD1, and GBD2 are respectively introduced for De and Omori’s axiomatic extensions BD+, BDe, BD1, and BD2 of Belnap–Dunn logic by adding classical negation. These calculi are constructed based on a small modification of the original characteristic axiom scheme for negated implication. Theorems for syntactically and semantically embedding these calculi into a Gentzen-type sequent calculus LK for classical logic are proved. The cut-elimination, decidability, and completeness theorems for these calculi are obtained using these embedding theorems. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Paraconsistent and Paracomplete Zermelo–Fraenkel Set Theory.Yurii Khomskii & Hrafn Valtýr Oddsson - 2024 - Review of Symbolic Logic 17 (4):965-995.
    We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The lattice of Belnapian modal logics: Special extensions and counterparts.Sergei P. Odintsov & Stanislav O. Speranski - 2016 - Logic and Logical Philosophy 25 (1):3-33.
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these classes; • associating with every Belnapian modal logic its explosive, complete and classical counterparts. We investigate the relationships between special extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Modal Multilattice Logic.Norihiro Kamide & Yaroslav Shramko - 2017 - Logica Universalis 11 (3):317-343.
    A modal extension of multilattice logic, called modal multilattice logic, is introduced as a Gentzen-type sequent calculus \. Theorems for embedding \ into a Gentzen-type sequent calculus S4C and vice versa are proved. The cut-elimination theorem for \ is shown. A Kripke semantics for \ is introduced, and the completeness theorem with respect to this semantics is proved. Moreover, the duality principle is proved as a characteristic property of \.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Paraconsistent Double Negations as Classical and Intuitionistic Negations.Norihiro Kamide - 2017 - Studia Logica 105 (6):1167-1191.
    A classical paraconsistent logic, which is regarded as a modified extension of first-degree entailment logic, is introduced as a Gentzen-type sequent calculus. This logic can simulate the classical negation in classical logic by paraconsistent double negation in CP. Theorems for syntactically and semantically embedding CP into a Gentzen-type sequent calculus LK for classical logic and vice versa are proved. The cut-elimination and completeness theorems for CP are also shown using these embedding theorems. Similar results are also obtained for an intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proof Theory of Paraconsistent Quantum Logic.Norihiro Kamide - 2018 - Journal of Philosophical Logic 47 (2):301-324.
    Paraconsistent quantum logic, a hybrid of minimal quantum logic and paraconsistent four-valued logic, is introduced as Gentzen-type sequent calculi, and the cut-elimination theorems for these calculi are proved. This logic is shown to be decidable through the use of these calculi. A first-order extension of this logic is also shown to be decidable. The relationship between minimal quantum logic and paraconsistent four-valued logic is clarified, and a survey of existing Gentzen-type sequent calculi for these logics and their close relatives is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dualities for modal N4-lattices.R. Jansana & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (4):608-637.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal logics with Belnapian truth values.Serge P. Odintsov & Heinrich Wansing - 2010 - Journal of Applied Non-Classical Logics 20 (3):279-304.
    Various four- and three-valued modal propositional logics are studied. The basic systems are modal extensions BK and BS4 of Belnap and Dunn's four-valued logic of firstdegree entailment. Three-valued extensions of BK and BS4 are considered as well. These logics are introduced semantically by means of relational models with two distinct evaluation relations, one for verification and the other for falsification. Axiom systems are defined and shown to be sound and complete with respect to the relational semantics and with respect to (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Non-Classical Negation in the Works of Helena Rasiowa and Their Impact on the Theory of Negation.Dimiter Vakarelov - 2006 - Studia Logica 84 (1):105-127.
    The paper is devoted to the contributions of Helena Rasiowa to the theory of non-classical negation. The main results of Rasiowa in this area concerns–constructive logic with strong (Nelson) negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Non-deterministic View on Non-classical Negations.Arnon Avron - 2005 - Studia Logica 80 (2-3):159-194.
    We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Gentzen-Type Methods for Bilattice Negation.Norihiro Kamide - 2005 - Studia Logica 80 (2-3):265-289.
    A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed sequent calculi including CLS (a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Inference Rules in Nelson’s Logics, Admissibility and Weak Admissibility.Sergei Odintsov & Vladimir Rybakov - 2015 - Logica Universalis 9 (1):93-120.
    Our paper aims to investigate inference rules for Nelson’s logics and to discuss possible ways to determine admissibility of inference rules in such logics. We will use the technique offered originally for intuitionistic logic and paraconsistent minimal Johannson’s logic. However, the adaptation is not an easy and evident task since Nelson’s logics do not enjoy replacement of equivalences rule. Therefore we consider and compare standard admissibility and weak admissibility. Our paper founds algorithms for recognizing weak admissibility and admissibility itself – (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Hierarchy of Weak Double Negations.Norihiro Kamide - 2013 - Studia Logica 101 (6):1277-1297.
    In this paper, a way of constructing many-valued paraconsistent logics with weak double negation axioms is proposed. A hierarchy of weak double negation axioms is addressed in this way. The many-valued paraconsistent logics constructed are defined as Gentzen-type sequent calculi. The completeness and cut-elimination theorems for these logics are proved in a uniform way. The logics constructed are also shown to be decidable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • G3-style Sequent Calculi for Gurevich Logic and Its Neighbors.Norihiro Kamide & Sara Negri - forthcoming - Studia Logica:1-29.
    G3-style sequent calculi are introduced for a family of logics with strong negation: Gurevich logic, Nelson logic, intuitionistic propositional logic, Avron logic, De-Omori logic, and classical propositional logic. Structural properties including cut elimination are established for these calculi. In addition, a Glivenko theorem for embedding classical propositional logic into Gurevich logic is shown.
    Download  
     
    Export citation  
     
    Bookmark  
  • BK-lattices. Algebraic Semantics for Belnapian Modal Logics.Sergei P. Odintsov & E. I. Latkin - 2012 - Studia Logica 100 (1-2):319-338.
    Earlier algebraic semantics for Belnapian modal logics were defined in terms of twist-structures over modal algebras. In this paper we introduce the class of BK -lattices, show that this class coincides with the abstract closure of the class of twist-structures, and it forms a variety. We prove that the lattice of subvarieties of the variety of BK -lattices is dually isomorphic to the lattice of extensions of Belnapian modal logic BK . Finally, we describe invariants determining a twist-structure over a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Strong Normalizability of Typed Lambda-Calculi for Substructural Logics.Motohiko Mouri & Norihiro Kamide - 2008 - Logica Universalis 2 (2):189-207.
    The strong normalization theorem is uniformly proved for typed λ-calculi for a wide range of substructural logics with or without strong negation.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Connexive logic.Heinrich Wansing - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Informational interpretation of substructural propositional logics.Heinrich Wansing - 1993 - Journal of Logic, Language and Information 2 (4):285-308.
    This paper deals with various substructural propositional logics, in particular with substructural subsystems of Nelson's constructive propositional logics N– and N. Doen's groupoid semantics is extended to these constructive systems and is provided with an informational interpretation in terms of information pieces and operations on information pieces.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Normal modal substructural logics with strong negation.Norihiro Kamide - 2003 - Journal of Philosophical Logic 32 (6):589-612.
    We introduce modal propositional substructural logics with strong negation, and prove the completeness theorems (with respect to Kripke models) for these logics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Phase semantics and Petri net interpretation for resource-sensitive strong negation.Norihiro Kamide - 2006 - Journal of Logic, Language and Information 15 (4):371-401.
    Wansing’s extended intuitionistic linear logic with strong negation, called WILL, is regarded as a resource-conscious refinment of Nelson’s constructive logics with strong negation. In this paper, (1) the completeness theorem with respect to phase semantics is proved for WILL using a method that simultaneously derives the cut-elimination theorem, (2) a simple correspondence between the class of Petri nets with inhibitor arcs and a fragment of WILL is obtained using a Kripke semantics, (3) a cut-free sequent calculus for WILL, called twist (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Partiality and its dual.J. Michael Dunn - 2000 - Studia Logica 66 (1):5-40.
    This paper explores allowing truth value assignments to be undetermined or "partial" and overdetermined or "inconsistent", thus returning to an investigation of the four-valued semantics that I initiated in the sixties. I examine some natural consequence relations and show how they are related to existing logics, including ukasiewicz's three-valued logic, Kleene's three-valued logic, Anderson and Belnap's relevant entailments, Priest's "Logic of Paradox", and the first-degree fragment of the Dunn-McCall system "R-mingle". None of these systems have nested implications, and I investigate (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Quantifiers in connexive logic (in general and in particular).Heinrich Wansing & Zach Weber - forthcoming - Logic Journal of the IGPL.
    Connexive logic has room for two pairs of universal and particular quantifiers: one pair, |$\forall $| and |$\exists $|⁠, are standard quantifiers; the other pair, |$\mathbb{A}$| and |$\mathbb{E}$|⁠, are unorthodox, but we argue, are well-motivated in the context of connexive logic. Both non-standard quantifiers have been introduced previously, but in the context of connexive logic they have a natural semantic and proof-theoretic place, and plausible natural language readings. The results are logics that are negation inconsistent but non-trivial.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Symmetric and conflated intuitionistic logics.Norihiro Kamide - forthcoming - Logic Journal of the IGPL.
    Two new propositional non-classical logics, referred to as symmetric intuitionistic logic (SIL) and conflated intuitionistic logic (CIL), are introduced as indexed and non-indexed Gentzen-style sequent calculi. SIL is regarded as a natural hybrid logic combining intuitionistic and dual-intuitionistic logics, whereas CIL is regarded as a variant of intuitionistic paraconsistent logic with conflation and without paraconsistent negation. The cut-elimination theorems for SIL and CIL are proved. CIL is shown to be conservative over SIL.
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistent modal logics.Umberto Rivieccio - 2011 - Electronic Notes in Theoretical Computer Science 278:173-186.
    We introduce a modal expansion of paraconsistent Nelson logic that is also as a generalization of the Belnapian modal logic recently introduced by Odintsov and Wansing. We prove algebraic completeness theorems for both logics, defining and axiomatizing the corresponding algebraic semantics. We provide a representation for these algebras in terms of twiststructures, generalizing a known result on the representation of the algebraic counterpart of paraconsistent Nelson logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Falsification-Aware Calculi and Semantics for Normal Modal Logics Including S4 and S5.Norihiro Kamide - 2023 - Journal of Logic, Language and Information 32 (3):395-440.
    Falsification-aware (hyper)sequent calculi and Kripke semantics for normal modal logics including S4 and S5 are introduced and investigated in this study. These calculi and semantics are constructed based on the idea of a falsification-aware framework for Nelson’s constructive three-valued logic. The cut-elimination and completeness theorems for the proposed calculi and semantics are proved.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Embedding Friendly First-Order Paradefinite and Connexive Logics.Norihiro Kamide - 2022 - Journal of Philosophical Logic 51 (5):1055-1102.
    First-order intuitionistic and classical Nelson–Wansing and Arieli–Avron–Zamansky logics, which are regarded as paradefinite and connexive logics, are investigated based on Gentzen-style sequent calculi. The cut-elimination and completeness theorems for these logics are proved uniformly via theorems for embedding these logics into first-order intuitionistic and classical logics. The modified Craig interpolation theorems for these logics are also proved via the same embedding theorems. Furthermore, a theorem for embedding first-order classical Arieli–Avron–Zamansky logic into first-order intuitionistic Arieli–Avron–Zamansky logic is proved using a modified (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation.Norihiro Kamide - 2021 - Journal of Logic, Language and Information 30 (3):491-531.
    In this study, we introduce Gentzen-type sequent calculi BDm and BDi for a modal extension and an intuitionistic modification, respectively, of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation. We prove theorems for syntactically and semantically embedding BDm and BDi into Gentzen-type sequent calculi S4 and LJ for normal modal logic and intuitionistic logic, respectively. The cut-elimination, decidability, and completeness theorems for BDm and BDi are obtained using these embedding theorems. Moreover, we prove the Glivenko theorem for embedding (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lattice Logic, Bilattice Logic and Paraconsistent Quantum Logic: a Unified Framework Based on Monosequent Systems.Norihiro Kamide - 2021 - Journal of Philosophical Logic 50 (4):781-811.
    Lattice logic, bilattice logic, and paraconsistent quantum logic are investigated based on monosequent systems. Paraconsistent quantum logic is an extension of lattice logic, and bilattice logic is an extension of paraconsistent quantum logic. Monosequent system is a sequent calculus based on the restricted sequent that contains exactly one formula in both the antecedent and succedent. It is known that a completeness theorem with respect to a lattice-valued semantics holds for a monosequent system for lattice logic. A completeness theorem with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Inconsistent Models for Arithmetics with Constructible Falsity.Thomas Macaulay Ferguson - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Reprint of: A more general general proof theory.Heinrich Wansing - 2017 - Journal of Applied Logic 25:23-46.
    In this paper it is suggested to generalize our understanding of general (structural) proof theory and to consider it as a general theory of two kinds of derivations, namely proofs and dual proofs. The proposal is substantiated by (i) considerations on assertion, denial, and bi-lateralism, (ii) remarks on compositionality in proof-theoretic semantics, and (iii) comments on falsification and co-implication. The main formal result of the paper is a normal form theorem for the natural deduction proof system N2Int of the bi-intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kripke Completeness of Bi-intuitionistic Multilattice Logic and its Connexive Variant.Norihiro Kamide, Yaroslav Shramko & Heinrich Wansing - 2017 - Studia Logica 105 (6):1193-1219.
    In this paper, bi-intuitionistic multilattice logic, which is a combination of multilattice logic and the bi-intuitionistic logic also known as Heyting–Brouwer logic, is introduced as a Gentzen-type sequent calculus. A Kripke semantics is developed for this logic, and the completeness theorem with respect to this semantics is proved via theorems for embedding this logic into bi-intuitionistic logic. The logic proposed is an extension of first-degree entailment logic and can be regarded as a bi-intuitionistic variant of the original classical multilattice logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations