Switch to: References

Add citations

You must login to add citations.
  1. Knowledge and ignorance in Belnap–Dunn logic.Daniil Kozhemiachenko & Liubov Vashentseva - forthcoming - Logic Journal of the IGPL.
    In this paper, we argue that the usual approach to modelling knowledge and belief with the necessity modality |$\Box $| does not produce intuitive outcomes in the framework of the Belnap–Dunn logic (⁠|$\textsf{BD}$|⁠, alias |$\textbf{FDE}$|—first-degree entailment). We then motivate and introduce a nonstandard modality |$\blacksquare $| that formalizes knowledge and belief in |$\textsf{BD}$| and use |$\blacksquare $| to define |$\bullet $| and |$\blacktriangledown $| that formalize the unknown truth and ignorance as not knowing whether, respectively. Moreover, we introduce another modality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • EF4, EF4-M and EF4-Ł: A companion to BN4 and two modal four-valued systems without strong Łukasiewicz-type modal paradoxes. [REVIEW]José Miguel Blanco - forthcoming - Logic and Logical Philosophy:75-104.
    The logic BN4 was defined by R.T. Brady as a four-valued extension of Routley and Meyer’s basic logic B. The system EF4 is defined as a companion to BN4 to represent the four-valued system of implication. The system Ł was defined by J. Łukasiewicz and it is a four-valued modal logic that validates what is known as strong Łukasiewicz-type modal paradoxes. The systems EF4-M and EF4-Ł are defined as alternatives to Ł without modal paradoxes. This paper aims to define a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Belnap–Dunn Modal Logic with Value Operators.Yuanlei Lin & Minghui Ma - 2020 - Studia Logica 109 (4):759-789.
    The language of Belnap–Dunn modal logic \ expands the language of Belnap–Dunn four-valued logic with the modal operator \. We introduce the polarity semantics for \ and its two expansions \ and \ with value operators. The local finitary consequence relation \ in the language \ with respect to the class of all frames is axiomatized by a sequent system \ where \. We prove by using translations between sequents and formulas that these languages under the polarity semantics have the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a multilattice analogue of a hypersequent S5 calculus.Oleg Grigoriev & Yaroslav Petrukhin - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Propositional dynamic logic with belnapian truth values.Igor Sedlár - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 503-519.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relational semantics for the 4-valued relevant logics BN4 and E4.Gemma Robles, José M. Blanco, Sandra M. López, Jesús R. Paradela & Marcos M. Recio - 2016 - Logic and Logical Philosophy 25 (2):173-201.
    The logic BN4 was defined by R.T. Brady in 1982. It can be considered as the 4-valued logic of the relevant conditional. E4 is a variant of BN4 that can be considered as the 4-valued logic of entailment. The aim of this paper is to define reduced general Routley-Meyer semantics for BN4 and E4. It is proved that BN4 and E4 are strongly sound and complete w.r.t. their respective semantics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • 40 years of FDE: An Introductory Overview.Hitoshi Omori & Heinrich Wansing - 2017 - Studia Logica 105 (6):1021-1049.
    In this introduction to the special issue “40 years of FDE”, we offer an overview of the field and put the papers included in the special issue into perspective. More specifically, we first present various semantics and proof systems for FDE, and then survey some expansions of FDE by adding various operators starting with constants. We then turn to unary and binary connectives, which are classified in a systematic manner. First-order FDE is also briefly revisited, and we conclude by listing (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Dualities for modal N4-lattices.R. Jansana & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (4):608-637.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal twist-structures over residuated lattices.H. Ono & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (3):440-457.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strengthening Brady’s Paraconsistent 4-Valued Logic BN4 with Truth-Functional Modal Operators.José M. Méndez & Gemma Robles - 2016 - Journal of Logic, Language and Information 25 (2):163-189.
    Łukasiewicz presented two different analyses of modal notions by means of many-valued logics: the linearly ordered systems Ł3,..., Open image in new window,..., \; the 4-valued logic Ł he defined in the last years of his career. Unfortunately, all these systems contain “Łukasiewicz type paradoxes”. On the other hand, Brady’s 4-valued logic BN4 is the basic 4-valued bilattice logic. The aim of this paper is to show that BN4 can be strengthened with modal operators following Łukasiewicz’s strategy for defining truth-functional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kripke-Completeness and Sequent Calculus for Quasi-Boolean Modal Logic.Minghui Ma & Juntong Guo - forthcoming - Studia Logica:1-30.
    Quasi-Boolean modal algebras are quasi-Boolean algebras with a modal operator satisfying the interaction axiom. Sequential quasi-Boolean modal logics and the relational semantics are introduced. Kripke-completeness for some quasi-Boolean modal logics is shown by the canonical model method. We show that every descriptive persistent quasi-Boolean modal logic is canonical. The finite model property of some quasi-Boolean modal logics is proved. A cut-free Gentzen sequent calculus for the minimal quasi-Boolean logic is developed and we show that it has the Craig interpolation property.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-contingency in a Paraconsistent Setting.Daniil Kozhemiachenko & Liubov Vashentseva - forthcoming - Logic Journal of the IGPL.
    We study an extension of first-degree entailment (FDE) by Dunn and Belnap with a non-contingency operator |$\blacktriangle \phi $| which is construed as ‘|$\phi $| has the same value in all accessible states’ or ‘all sources give the same information on the truth value of |$\phi $|’. We equip this logic dubbed |$\textbf {K}^\blacktriangle _{\textbf {FDE}}$| with frame semantics and show how the bi-valued models can be interpreted as interconnected networks of Belnapian databases with the |$\blacktriangle $| operator modelling search (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From positive PDL to its non-classical extensions.Igor Sedlár & Vít Punčochář - 2019 - Logic Journal of the IGPL 27 (4):522-542.
    We provide a complete binary implicational axiomatization of the positive fragment of propositional dynamic logic. The intended application of this result are completeness proofs for non-classical extensions of positive PDL. Two examples are discussed in this article, namely, a paraconsistent extension with modal De Morgan negation and a substructural extension with the residuated operators of the non-associative Lambek calculus. Informal interpretations of these two extensions are outlined.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The modal logics of kripke–feferman truth.Carlo Nicolai & Johannes Stern - 2021 - Journal of Symbolic Logic 86 (1):362-396.
    We determine the modal logic of fixed-point models of truth and their axiomatizations by Solomon Feferman via Solovay-style completeness results. Given a fixed-point model $\mathcal {M}$, or an axiomatization S thereof, we find a modal logic M such that a modal sentence $\varphi $ is a theorem of M if and only if the sentence $\varphi ^*$ obtained by translating the modal operator with the truth predicate is true in $\mathcal {M}$ or a theorem of S under all such translations. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The lattice of Belnapian modal logics: Special extensions and counterparts.Sergei P. Odintsov & Stanislav O. Speranski - 2016 - Logic and Logical Philosophy 25 (1):3-33.
    Let K be the least normal modal logic and BK its Belnapian version, which enriches K with ‘strong negation’. We carry out a systematic study of the lattice of logics containing BK based on: • introducing the classes of so-called explosive, complete and classical Belnapian modal logics; • assigning to every normal modal logic three special conservative extensions in these classes; • associating with every Belnapian modal logic its explosive, complete and classical counterparts. We investigate the relationships between special extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Definability of Connectives and Modal Logics over FDE.Sergei P. Odintsov, Daniel Skurt & Heinrich Wansing - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal extension of ideal paraconsistent four-valued logic and its subsystem.Norihiro Kamide & Yoni Zohar - 2020 - Annals of Pure and Applied Logic 171 (10):102830.
    This study aims to introduce a modal extension M4CC of Arieli, Avron, and Zamansky's ideal paraconsistent four-valued logic 4CC as a Gentzen-type sequent calculus and prove the Kripke-completeness and cut-elimination theorems for M4CC. The logic M4CC is also shown to be decidable and embeddable into the normal modal logic S4. Furthermore, a subsystem of M4CC, which has some characteristic properties that do not hold for M4CC, is introduced and the Kripke-completeness and cut-elimination theorems for this subsystem are proved. This subsystem (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cut-free Sequent Calculus and Natural Deduction for the Tetravalent Modal Logic.Martín Figallo - 2021 - Studia Logica 109 (6):1347-1373.
    The tetravalent modal logic is one of the two logics defined by Font and Rius :481–518, 2000) in connection with Monteiro’s tetravalent modal algebras. These logics are expansions of the well-known Belnap–Dunn’s four-valued logic that combine a many-valued character with a modal character. In fact, $${\mathcal {TML}}$$ TML is the logic that preserves degrees of truth with respect to tetravalent modal algebras. As Font and Rius observed, the connection between the logic $${\mathcal {TML}}$$ TML and the algebras is not so (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Disentangling FDE -Based Paraconsistent Modal Logics.Sergei P. Odintsov & Heinrich Wansing - 2017 - Studia Logica 105 (6):1221-1254.
    The relationships between various modal logics based on Belnap and Dunn’s paraconsistent four-valued logic FDE are investigated. It is shown that the paraconsistent modal logic \, which lacks a primitive possibility operator \, is definitionally equivalent with the logic \, which has both \ and \ as primitive modalities. Next, a tableau calculus for the paraconsistent modal logic KN4 introduced by L. Goble is defined and used to show that KN4 is definitionally equivalent with \ without the absurdity constant. Moreover, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Connexive logic.Heinrich Wansing - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Implicit, explicit and speculative knowledge.Hans van Ditmarsch, Tim French, Fernando R. Velázquez-Quesada & Yì N. Wáng - 2018 - Artificial Intelligence 256:35-67.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof systems for various fde-based modal logics.Sergey Drobyshevich & Heinrich Wansing - 2020 - Review of Symbolic Logic 13 (4):720-747.
    We present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing and Odintsov & Wansing, as well as the modal logic KN4 with strong implication introduced in Goble. In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Belnap–Dunn Modal Logics: Truth Constants Vs. Truth Values.Sergei P. Odintsov & Stanislav O. Speranski - 2020 - Review of Symbolic Logic 13 (2):416-435.
    We shall be concerned with the modal logic BK—which is based on the Belnap–Dunn four-valued matrix, and can be viewed as being obtained from the least normal modal logic K by adding ‘strong negation’. Though all four values ‘truth’, ‘falsity’, ‘neither’ and ‘both’ are employed in its Kripke semantics, only the first two are expressible as terms. We show that expanding the original language of BK to include constants for ‘neither’ or/and ‘both’ leads to quite unexpected results. To be more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Modal Multilattice Logic.Norihiro Kamide & Yaroslav Shramko - 2017 - Logica Universalis 11 (3):317-343.
    A modal extension of multilattice logic, called modal multilattice logic, is introduced as a Gentzen-type sequent calculus \. Theorems for embedding \ into a Gentzen-type sequent calculus S4C and vice versa are proved. The cut-elimination theorem for \ is shown. A Kripke semantics for \ is introduced, and the completeness theorem with respect to this semantics is proved. Moreover, the duality principle is proved as a characteristic property of \.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Four-Valued Dynamic Epistemic Logic.Yuri David Santos - 2020 - Journal of Logic, Language and Information 29 (4):451-489.
    Epistemic logic is usually employed to model two aspects of a situation: the factual and the epistemic aspects. Truth, however, is not always attainable, and in many cases we are forced to reason only with whatever information is available to us. In this paper, we will explore a four-valued epistemic logic designed to deal with these situations, where agents have only knowledge about the available information, which can be incomplete or conflicting, but not explicitly about facts. This layer of available (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combining Swap Structures: The Case of Paradefinite Ivlev-Like Modal Logics Based on $$FDE$$.Marcelo E. Coniglio - forthcoming - Studia Logica:1-52.
    The aim of this paper is to combine several Ivlev-like modal systems characterized by 4-valued non-deterministic matrices (Nmatrices) with $$\mathcal {IDM}4$$, a 4-valued expansion of Belnap–Dunn’s logic $$FDE$$ with an implication introduced by Pynko in 1999. In order to do this, we introduce a new methodology for combining logics which are characterized by means of swap structures, based on what we call superposition of snapshots. In particular, the combination of $$\mathcal {IDM}4$$ with $$Tm$$, the 4-valued Ivlev’s version of KT, will (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • BK-lattices. Algebraic Semantics for Belnapian Modal Logics.Sergei P. Odintsov & E. I. Latkin - 2012 - Studia Logica 100 (1-2):319-338.
    Earlier algebraic semantics for Belnapian modal logics were defined in terms of twist-structures over modal algebras. In this paper we introduce the class of BK -lattices, show that this class coincides with the abstract closure of the class of twist-structures, and it forms a variety. We prove that the lattice of subvarieties of the variety of BK -lattices is dually isomorphic to the lattice of extensions of Belnapian modal logic BK . Finally, we describe invariants determining a twist-structure over a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A General Framework for $$ {FDE}$$ FDE -Based Modal Logics.Sergey Drobyshevich - 2020 - Studia Logica 108 (6):1281-1306.
    We develop a general theory of FDE-based modal logics. Our framework takes into account the four-valued nature of FDE by considering four partially defined modal operators corresponding to conditions for verifying and falsifying modal necessity and possibility operators. The theory comes with a uniform characterization for all obtained systems in terms of FDE-style formula-formula sequents. We also develop some correspondence theory and show how Hilbert-style axiom systems can be obtained in appropriate cases. Finally, we outline how different systems from the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal and Intuitionistic Variants of Extended Belnap–Dunn Logic with Classical Negation.Norihiro Kamide - 2021 - Journal of Logic, Language and Information 30 (3):491-531.
    In this study, we introduce Gentzen-type sequent calculi BDm and BDi for a modal extension and an intuitionistic modification, respectively, of De and Omori’s extended Belnap–Dunn logic BD+ with classical negation. We prove theorems for syntactically and semantically embedding BDm and BDi into Gentzen-type sequent calculi S4 and LJ for normal modal logic and intuitionistic logic, respectively. The cut-elimination, decidability, and completeness theorems for BDm and BDi are obtained using these embedding theorems. Moreover, we prove the Glivenko theorem for embedding (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neighbourhood Semantics for FDE-Based Modal Logics.S. Drobyshevich & D. Skurt - 2021 - Studia Logica 109 (6):1273-1309.
    We investigate some non-normal variants of well-studied paraconsistent and paracomplete modal logics that are based on N. Belnap’s and M. Dunn’s four-valued logic. Our basic non-normal modal logics are characterized by a weak extensionality rule, which reflects the four-valued nature of underlying logics. Aside from introducing our basic framework of bi-neighbourhood semantics, we develop a correspondence theory in order to prove completeness results with respect to our neighbourhood semantics for non-normal variants of \, \ and \.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bilattice logic of epistemic actions and knowledge.Zeinab Bakhtiari, Hans van Ditmarsch & Umberto Rivieccio - 2020 - Annals of Pure and Applied Logic 171 (6):102790.
    Baltag, Moss, and Solecki proposed an expansion of classical modal logic, called logic of epistemic actions and knowledge (EAK), in which one can reason about knowledge and change of knowledge. Kurz and Palmigiano showed how duality theory provides a flexible framework for modeling such epistemic changes, allowing one to develop dynamic epistemic logics on a weaker propositional basis than classical logic (for example an intuitionistic basis). In this paper we show how the techniques of Kurz and Palmigiano can be further (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation