Switch to: References

Add citations

You must login to add citations.
  1. Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Points, particles, and structural realism.Oliver Pooley - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press. pp. 83--120.
    In his paper ``What is Structural Realism?'' James Ladyman drew a distinction between epistemological structural realism and metaphysical (or ontic) structural realism. He also drew a suggestive analogy between the perennial debate between substantivalist and relationalist interpretations of spacetime on the one hand, and the debate about whether quantum mechanics treats identical particles as individuals or as `non-individuals' on the other. In both cases, Ladyman's suggestion is that an ontic structural realist interpretation of the physics might be just what is (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Minkowski space-time: A glorious non-entity.Harvey R. Brown & Oliver Pooley - 2006 - In Dennis Geert Bernardus Johan Dieks (ed.), The ontology of spacetime. Boston: Elsevier. pp. 67--89.
    It is argued that Minkowski space-time cannot serve as the deep structure within a ``constructive'' version of the special theory of relativity, contrary to widespread opinion in the philosophical community.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Strange couplings and space-time structure.Steven Weinstein - 1996 - Philosophy of Science 63 (3):70.
    General relativity is commonly thought to imply the existence of a unique metric structure for space-time. A simple example is presented of a general relativistic theory with ambiguous metric structure. Brans-Dicke theory is then presented as a further example of a space-time theory in which the metric structure is ambiguous. Other examples of theories with ambiguous metrical structure are mentioned. Finally, it is suggested that several new and interesting philosophical questions arise from the sorts of theories discussed.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Can the two-time interpretation of quantum mechanics solve the measurement problem?Katie Robertson - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 58:54-62.
    Over many years, Aharonov and co-authors have proposed a new interpretation of quantum mechanics: the two-time interpretation. This interpretation assigns two wavefunctions to a system, one of which propagates forwards in time and the other backwards. In this paper, I argue that this interpretation does not solve the measurement problem. In addition, I argue that it is neither necessary nor sufficient to attribute causal power to the backwards-evolving wavefunction ⟨Φ| and thus its existence should be denied, contra the two-time interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reflections on the deBroglie–Bohm Quantum Potential.Peter J. Riggs - 2008 - Erkenntnis 68 (1):21-39.
    The deBroglie–Bohm quantum potential is the potential energy function of the wave field. The quantum potential facilitates the transference of energy from wave field to particle and back again which accounts for energy conservation in isolated quantum systems. Factors affecting energy exchanges and the form of the quantum potential are discussed together with the related issues of the absence of a source term for the wave field and the lack of a classical back reaction.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • There Is No Conspiracy of Inertia.Ryan Samaroo - 2018 - British Journal for the Philosophy of Science 69 (4):957-982.
    I examine two claims that arise in Brown’s account of inertial motion. Brown claims there is something objectionable about the way in which the motions of free particles in Newtonian theory and special relativity are coordinated. Brown also claims that since a geodesic principle can be derived in Einsteinian gravitation, the objectionable feature is explained away. I argue that there is nothing objectionable about inertia and that while the theorems that motivate Brown’s second claim can be said to figure in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Structural realism and quantum gravity.Tian Yu Cao - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Substantivalist and Relationalist Approaches to Spacetime.Oliver Pooley - 2013 - In Robert W. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA.
    Substantivalists believe that spacetime and its parts are fundamental constituents of reality. Relationalists deny this, claiming that spacetime enjoys only a derivative existence. I begin by describing how the Galilean symmetries of Newtonian physics tell against both Newton's brand of substantivalism and the most obvious relationalist alternative. I then review the obvious substantivalist response to the problem, which is to ditch substantival space for substantival spacetime. The resulting position has many affinities with what are arguably the most natural interpretations of (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • On the meaning of the relativity principle and other symmetries.Harvey R. Brown & Roland Sypel - 1995 - International Studies in the Philosophy of Science 9 (3):235 – 253.
    Abstract The historical evolution of the principle of relativity from Galileo to Einstein is briefly traced, and purported difficulties with Einstein's formulation of the principle are examined and dismissed. This formulation is then compared to a precise version formulated recently in the geometrical language of spacetime theories. We claim that the recent version is both logically puzzling and fails to capture a crucial physical insight contained in the earlier formulations. The implications of this claim for the modern treatment of general (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Is there really no projection postulate in the modal interpretation?W. Michael Dickson - 1995 - British Journal for the Philosophy of Science 46 (2):197-218.
    Modal interpretations of quantum mechanics admit two kinds of state: physical states, which specify the values of observables on a system, and theoretical states, which specify a probability distribution over possible physical states. They appear to use this distinction to deny the projection postulate, claiming that collapse corresponds only to a change from discussing the theoretical state to discussing the physical state. I argue that modal interpretations should adopt a projection postulate at the level of the theoretical state. However, other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Inertial Trajectories in de Broglie-Bohm Quantum Theory: An Unexpected Problem.Pablo Acuña - 2016 - International Studies in the Philosophy of Science 30 (3):201-230.
    A salient feature of de Broglie-Bohm quantum theory is that particles have determinate positions at all times and in all physical contexts. Hence, the trajectory of a particle is a well-defined concept. One then may expect that the closely related notion of inertial trajectory is also unproblematically defined. I show that this expectation is not met. I provide a framework that deploys six different ways in which dBB theory can be interpreted, and I state that only in the canonical interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Decoherence and its Role in the Modern Measurement Problem.David Wallace - unknown
    Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made diffcult by the fact that the "measurement problem", as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Einstein, the reality of space, and the action-reaction principle.Dennis Lehmkuhl, P. Ghose & Harvey Brown - unknown
    Einstein regarded as one of the triumphs of his 1915 theory of gravity - the general theory of relativity - that it vindicated the action-reaction principle, while Newtonian mechanics as well as his 1905 special theory of relativity supposedly violated it. In this paper we examine why Einstein came to emphasise this position several years after the development of general relativity. Several key considerations are relevant to the story: the connection Einstein originally saw between Mach's analysis of inertia and both (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • One world, one beable.Craig Callender - 2015 - Synthese 192 (10):3153-3177.
    Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The Quantum Measurement Problem and the Possible Role of the Gravitational Field.J. Anandan - 1999 - Foundations of Physics 29 (3):333-348.
    The quantum measurement problem and various unsuccessful attempts to resolve it are reviewed. A suggestion by Diosi and Penrose for the half-life of the quantum superposition of two Newtonian gravitational fields is generalized to an arbitrary quantum superposition of relativistic, but weak, gravitational fields. The nature of the “collapse” process of the wave function is examined.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mindful of Quantum Possibilities.Harvey R. Brown - 1996 - British Journal for the Philosophy of Science 47 (2):189-199.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Antidote or Theory?Michael Dickson - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):229-238.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aspects of objectivity in quantum mechanics.Harvey R. Brown - 1999 - In Jeremy Butterfield & Constantine Pagonis (eds.), From Physics to Philosophy. Cambridge University Press. pp. 45--70.
    The purpose of the paper is to explore different aspects of the covariance of non-relativistic quantum mechanics. First, doubts are expressed concerning the claim that gauge fields can be 'generated' by way of imposition of gauge covariance of the single-particle wave equation. Then a brief review is given of Galilean covariance in the general case of external fields, and the connection between Galilean boosts and gauge transformations. Under time-dependent translations the geometric phase associated with Schrödinger evolution is non-invariant, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • QFT, antimatter, and symmetry.David Wallace - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):209-222.
    A systematic analysis is made of the relations between the symmetries of a classical field and the symmetries of the one-particle quantum system that results from quantizing that field in regimes where interactions are weak. The results are applied to gain a greater insight into the phenomenon of antimatter.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Theory of (Exclusively) Local Beables.Travis Norsen - 2010 - Foundations of Physics 40 (12):1858-1884.
    It is shown how, starting with the de Broglie–Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot-wave” field (living in physical space). A number of additional fields (also fields on physical space) maintain (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the role of special relativity in general relativity.Harvey R. Brown - 1997 - International Studies in the Philosophy of Science 11 (1):67 – 81.
    The existence of a definite tangent space structure (metric with Lorentzian signature) in the general theory of relativity is the consequence of a fundamental assumption concerning the local validity of special relativity. There is then at the heart of Einstein's theory of gravity an absolute element which depends essentially on a common feature of all the non-gravitational interactions in the world, and which has nothing to do with space-time curvature. Tentative implications of this point for the significance of the vacuum (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Is the electron's charge 2e? A problem of the de Broglie-Bohm theory.Shan Gao - unknown
    It is shown that the de Broglie-Bohm theory has a potential problem concerning the charge distribution of a quantum system such as an electron. According to the guidance equation of the theory, the electron's charge is localized in a position where its Bohmian particle is. But according to the Schrödinger equation of the theory, the electron's charge is not localized in one position but distributed throughout space, and the charge density in each position is proportional to the modulus square of (...)
    Download  
     
    Export citation  
     
    Bookmark