Switch to: References

Citations of:

Aspects of objectivity in quantum mechanics

In Jeremy Butterfield & Constantine Pagonis (eds.), From Physics to Philosophy. Cambridge University Press. pp. 45--70 (1999)

Add citations

You must login to add citations.
  1. Holism and structuralism in U(1) gauge theory.Holger Lyre - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):643-670.
    After decades of neglect philosophers of physics have discovered gauge theories--arguably the paradigm of modern field physics--as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism--in the eyes of its proponents the best suited realist position towards modern physics--has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories--in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • The Stochastic-Quantum Correspondence.Jacob A. Barandes - manuscript
    This paper introduces an exact correspondence between a general class of stochastic systems and quantum theory. This correspondence provides a new framework for using Hilbert-space methods to formulate highly generic, non-Markovian types of stochastic dynamics, with potential applications throughout the sciences. This paper also uses the correspondence in the other direction to reconstruct quantum theory from physical models that consist of trajectories in configuration spaces undergoing stochastic dynamics. The correspondence thereby yields a new formulation of quantum theory, alongside the Hilbert-space, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The gauge argument: A Noether Reason.Henrique Gomes, Bryan W. Roberts & Jeremy Butterfield - 2022 - In James Read & Nicholas J. Teh (eds.), The physics and philosophy of Noether's theorems. Cambridge: Cambridge University Press. pp. 354-377.
    Why is gauge symmetry so important in modern physics, given that one must eliminate it when interpreting what the theory represents? In this paper we discuss the sense in which gauge symmetry can be fruitfully applied to constrain the space of possible dynamical models in such a way that forces and charges are appropriately coupled. We review the most well-known application of this kind, known as the 'gauge argument' or 'gauge principle', discuss its difficulties, and then reconstruct the gauge argument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Dynamical Approach to Spacetime Theories.Harvey R. Brown & James Read - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    We review the dynamical approach to spacetime theories---in particular, its origins in the development of special relativity, its opposition to the contemporary `geometrical' approach, and the manner in which it plays out in general relativity. In addition, we demonstrate that the approach is compatible with the `angle bracket school'.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Logic of Gauge.Alexander Afriat - 2019 - In Carlos Lobo & Julien Bernard (eds.), Weyl and the Problem of Space: From Science to Philosophy. Springer Verlag.
    The logic of gauge theory is considered by tracing its development from general relativity to Yang-Mills theory, through Weyl's two gauge theories. A handful of elements---which for want of better terms can be called \emph{geometrical justice}, \emph{matter wave}, \emph{second clock effect}, \emph{twice too many energy levels}---are enough to produce Weyl's second theory; and from there, all that's needed to reach the Yang-Mills formalism is a \emph{non-Abelian structure group} (say $\mathbb{SU}\textrm{(}N\textrm{)}$).
    Download  
     
    Export citation  
     
    Bookmark  
  • Does the Higgs mechanism exist?Holger Lyre - 2008 - International Studies in the Philosophy of Science 22 (2):119-133.
    This paper explores the argument structure of the concept of spontaneous symmetry breaking in the electroweak gauge theory of the Standard Model: the so-called Higgs mechanism. As commonly understood, the Higgs argument is designed to introduce the masses of the gauge bosons by a spontaneous breaking of the gauge symmetry of an additional field, the Higgs field. The technical derivation of the Higgs mechanism, however, consists in a mere reshuffling of degrees of freedom by transforming the Higgs Lagrangian in a (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Are gauge symmetry transformations observable?Katherine Brading & Harvey R. Brown - 2004 - British Journal for the Philosophy of Science 55 (4):645-665.
    In a recent paper in this journal, Kosso ([2000]) discussed the observational status of continuous symmetries of physics. While we are in broad agreement with his approach, we disagree with his analysis. In the discussion of the status of gauge symmetry, a set of examples offered by 't Hooft ([1980]) has influenced several philosophers, including Kosso; in all cases the interpretation of the examples is mistaken. In this paper, we present our preferred approach to the empirical significance of symmetries, re-analysing (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Relativity and Equivalence in Hilbert Space: A Principle-Theory Approach to the Aharonov–Bohm Effect.Guy Hetzroni - 2020 - Foundations of Physics 50 (2):120-135.
    This paper formulates generalized versions of the general principle of relativity and of the principle of equivalence that can be applied to general abstract spaces. It is shown that when the principles are applied to the Hilbert space of a quantum particle, its law of coupling to electromagnetic fields is obtained. It is suggested to understand the Aharonov-Bohm effect in light of these principles, and the implications for some related foundational controversies are discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Gauge Principles, Gauge Arguments and the Logic of Nature.Christopher A. Martin - 2002 - Philosophy of Science 69 (S3):S221-S234.
    I consider the question of how literally one can construe the “gauge argument,” which is the canonical means of understanding the putatively central import of local gauge symmetry principles for fundamental physics. As I argue, the gauge argument must be afforded a heuristic reading. Claims to the effect that the argument reflects a deep “logic of nature” must, for numerous reasons I discuss, be taken with a grain of salt.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Symmetrien, Strukturen, Realismus.Holger Lyre - 2012 - In Michael Esfeld (ed.), Philosophie der Physik. Berlin: Suhrkamp. pp. 368-389.
    In der modernen Physik spielen Symmetrien eine herausragende Rolle zur Identifikation und Klassifizierung der fundamentalen Theorien und Entitäten. Symmetrien dienen der Darstellung invarianter Strukturen, das geeignete mathematische Werkzeug hierfür ist die Gruppentheorie. Eine Struktur lässt sich als eine Menge von Relationen verstehen, die einer Menge von Objekten aufgeprägt sind. Strukturell charakterisierte Objekte sind daher wesentlich über ihre relationalen Eigenschaften charakterisiert. Sieht man die theoretischen Entitäten wissenschaftlicher Theorien vornehmlich in dieser strukturellen Weise an, vertritt man eine moderate Variante eines wissenschaftlichen Realismus, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)A versus b! Topological nonseparability and the Aharonov-Bohm effect.Tim Oliver Eynck, Holger Lyre & Nicolai von Rummell - 2001
    Since its discovery in 1959 the Aharonov-Bohm effect has continuously been the cause for controversial discussions of various topics in modern physics, e.g. the reality of gauge potentials, topological effects and nonlocalities. In the present paper we juxtapose the two rival interpretations of the Aharonov-Bohm effect. We show that the conception of nonlocality encountered in the Aharonov-Bohm effect is closely related to the nonseparability which is common in quantum mechanics albeit distinct from it due to its topological nature. We propose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The principles of gauging.Holger Lyre - 2001 - Philosophy of Science 68 (3):S371-S381.
    The aim of this paper is twofold: First, to present an examination of the principles underlying gauge field theories. I shall argue that there are two principles directly connected to the two well-known theorems of Emmy Noether concerning global and local symmetries of the free matter-field Lagrangian, in the following referred to as "conservation principle" and "gauge principle". Since both these express nothing but certain symmetry features of the free field theory, they are not sufficient to derive a true interaction (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Wait, Why Gauge?Sébastien Rivat - forthcoming - British Journal for the Philosophy of Science.
    Philosophers of physics have spent much effort unpacking the structure of gauge theories. But surprisingly, little attention has been devoted to the question of why we should require our best theories to be locally gauge invariant in the first place. Drawing on Steven Weinberg's works in the mid-1960s, I argue that the principle of local gauge invariance follows from Lorentz invariance and other natural assumptions in the context of perturbative relativistic quantum field theory. On this view, gauge freedom is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches.Philipp Berghofer, Jordan François, Simon Friederich, Henrique Gomes, Guy Hetzroni, Axel Maas & René Sondenheimer - 2023 - Cambridge University Press.
    Gauge symmetries play a central role, both in the mathematical foundations as well as the conceptual construction of modern (particle) physics theories. However, it is yet unclear whether they form a necessary component of theories, or whether they can be eliminated. It is also unclear whether they are merely an auxiliary tool to simplify (and possibly localize) calculations or whether they contain independent information. Therefore their status, both in physics and philosophy of physics, remains to be fully clarified. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gauge and Ghosts.Guy Hetzroni - 2021 - British Journal for the Philosophy of Science 72 (3):773-796.
    This article suggests a fresh look at gauge symmetries, with the aim of drawing a clear line between the a priori theoretical considerations involved, and some methodological and empirical non-deductive aspects that are often overlooked. The gauge argument is primarily based on a general symmetry principle expressing the idea that a change of mathematical representation should not change the form of the dynamical law. In addition, the ampliative part of the argument is based on the introduction of new degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The priority of internal symmetries in particle physics.Aharon Kantorovich - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):651-675.
    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of “Platonic realism.” The notion of physical “structure” is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (1 other version)Gauge principles, gauge arguments and the logic of nature.Christopher A. Martin - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S221-S234.
    I consider the question of how literally one can construe the “gauge argument,” which is the canonical means of understanding the putatively central import of local gauge symmetry principles for fundamental physics. As I argue, the gauge argument must be afforded a heuristic reading. Claims to the effect that the argument reflects a deep “logic of nature” must, for numerous reasons I discuss, be taken with a grain of salt.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Weyl’s gauge argument.Alexander Afriat - 2013 - Foundations of Physics 43 (5):699-705.
    The standard $\mathbb{U}(1)$ “gauge principle” or “gauge argument” produces an exact potential A=dλ and a vanishing field F=d 2 λ=0. Weyl (in Z. Phys. 56:330–352, 1929; Rice Inst. Pam. 16:280–295, 1929) has his own gauge argument, which is sketchy, archaic and hard to follow; but at least it produces an inexact potential A and a nonvanishing field F=dA≠0. I attempt a reconstruction.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Berry phase and quantum structure.Holger Lyre - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):45-51.
    The paper aims to spell out the relevance of the Berry phase in view of the question what the minimal mathematical structure is that accounts for all observable quantum phenomena. The question is both of conceptual and of ontological interest. While common wisdom tells us that the quantum structure is represented by the structure of the projective Hilbert space, the appropriate structure rich enough to account for the Berry phase is the U(1) bundle over that projective space. The Berry phase (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shortening the gauge argument.Alexander Afriat - unknown
    The ''gauge argument'' is often used to 'deduce' interactions from a symmetry requirement. A transition---whose justification can take some effort---from global to local transformations is typically made at the beginning of the argument. But one can spare the trouble by \emph{starting} with local transformations, as global ones do not exist in general. The resulting economy seems noteworthy.
    Download  
     
    Export citation  
     
    Bookmark