Switch to: References

Citations of:

Minkowski space-time: A glorious non-entity

In Dennis Dieks (ed.), The Ontology of Spacetime. Elsevier. pp. 67--89 (2004)

Add citations

You must login to add citations.
  1. Editorial.[author unknown] - 2017 - Editorial 9 (44):1-4.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fundamentality and the Dynamical Approach to Relativity.Oliver Pooley - manuscript
    I argue that notions of relative fundamentality need to be invoked if there is to be something substantive at stake in the debate between proponents of Harvey Brown's dynamical approach to relativity and defenders of a more traditional interpretation of spacetime. I will review some problems that stand in the way of the advocate of the dynamical approach making good on their claim that dynamical symmetries are more fundamental than spacetime symmetries.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reversing the arrow of time.Bryan W. Roberts - 2022 - Cambridge: Cambridge University Press.
    'The arrow of time' refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world, how to understand the relationship between symmetries and what is real, and how to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Equivalence Principle(s).Dennis Lehmkuhl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss the relationship between different versions of the equivalence principle in general relativity, among them Einstein's equivalence principle, the weak equivalence principle, and the strong equivalence principle. I show that Einstein's version of the equivalence principle is intimately linked to his idea that in GR gravity and inertia are unified to a single field, quite like the electric and magnetic field had been unified in special relativistic electrodynamics. At the same time, what is now often called the strong equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches to quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Physical Geometry.James P. Binkoski - 2016 - Dissertation, University of Massachusetts, Amherst
    All physical theories, from classical Newtonian mechanics to relativistic quantum field theory, entail propositions concerning the geometric structure of spacetime. To give an example, the general theory of relativity entails that spacetime is curved, smooth, and four-dimensional. In this dissertation, I take the structural commitments of our theories seriously and ask: how is such structure instantiated in the physical world? Mathematically, a property like 'being curved' is perfectly well-defined insofar as we know what it means for a mathematical space to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What represents space-time? And what follows for substantivalism vs. relationalism and gravitational energy?J. Brian Pitts - 2022 - In Antonio Vassallo (ed.), The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge.
    The questions of what represents space-time in GR, the status of gravitational energy, the substantivalist-relationalist issue, and the exceptional status of gravity are interrelated. If space-time has energy-momentum, then space-time is substantival. Two extant ways to avoid the substantivalist conclusion deny that the energy-bearing metric is part of space-time or deny that gravitational energy exists. Feynman linked doubts about gravitational energy to GR-exceptionalism, as do Curiel and Duerr; particle physics egalitarianism encourages realism about gravitational energy. In that spirit, this essay (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Behaviour of Rods and Clocks in General Relativity and the Meaning of the Metric Field.Harvey Brown & D. E. Rowe - 2018 - In David E. Rowe, Tilman Sauer & Scott A. Walter (eds.), Beyond Einstein: Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century. New York, USA: Springer New York. pp. 51-66.
    The notion that the metric field in general relativity can be understood as a property of space-time rests on a feature of the theory sometimes called universal coupling—the claim that rods and clocks “measure” the metric in a way that is independent of their constitution. It is pointed out that this feature is not strictly a consequence of the central dynamical tenets of the theory, and argued that the metric field would better be regarded as a field in space-time, rather (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Dynamical Approach to Spacetime Theories.Harvey R. Brown & James Read - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    We review the dynamical approach to spacetime theories---in particular, its origins in the development of special relativity, its opposition to the contemporary `geometrical' approach, and the manner in which it plays out in general relativity. In addition, we demonstrate that the approach is compatible with the `angle bracket school'.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Two dogmas of dynamicism.James Owen Weatherall - 2020 - Synthese 199 (S2):253-275.
    I critically discuss two dogmas of the “dynamical approach” to spacetime in general relativity, as advanced by Harvey Brown [Physical Relativity Oxford:Oxford University Press] and collaborators. The first dogma is that positing a “spacetime geometry” has no implications for the behavior of matter. The second dogma is that postulating the “Strong Equivalence Principle” suffices to ensure that matter is “adapted” to spacetime geometry. I conclude by discussing “spacetime functionalism”. The discussion is presented in reaction to and sympathy with recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Argument from Physics and General Relativity.Christopher Gregory Weaver - 2020 - Erkenntnis 85 (2):333-373.
    I argue that the best interpretation of the general theory of relativity has need of a causal entity, and causal structure that is not reducible to light cone structure. I suggest that this causal interpretation of GTR helps defeat a key premise in one of the most popular arguments for causal reductionism, viz., the argument from physics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conservation, inertia, and spacetime geometry.James Owen Weatherall - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:144-159.
    As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the "conservation condition", which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is defined (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Relativity without miracles.Adán Sus - 2020 - European Journal for Philosophy of Science 11 (1):1-33.
    It has been claimed, recently, that the fact that all the non-gravitational fields are locally Poincaré invariant and that these invariances coincide, in a certain regime, with the symmetries of the spacetime metric is miraculous in general relativity. In this paper I show that, in the context of GR, it is possible to account for these so-called miracles of relativity. The way to do so involves integrating the realisation that the gravitational field equations impose constraints on the behaviour of matter (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Dynamical Approach as Practical Geometry.Syman Stevens - 2015 - Philosophy of Science 82 (5):1152-1162.
    This article introduces Harvey Brown and Oliver Pooley’s ‘dynamical approach’ to special relativity, and argues that it may be construed as a relationalist form of Einstein’s ‘practical geometry’. This construal of the dynamical approach is shown to be compatible with related chapters of Brown’s text and also with recent descriptions of the dynamical approach by Pooley and others.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Regularity Relationalism and the Constructivist Project.Syman Stevens - 2017 - British Journal for the Philosophy of Science:axx037.
    ABSTRACT It has recently been argued that Harvey Brown and Oliver Pooley’s ‘dynamical approach’ to special relativity should be understood as what might be called an ontologically and ideologically relationalist approach to Minkowski geometry, according to which Minkowski geometrical structure supervenes upon the symmetries of the best-systems dynamical laws for a material world with primitive topological or differentiable structure. Fleshing out the details of some such primitive structure, and a conception of laws according to which Minkowski geometry could so supervene, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Geometric Possibility, by Gordon Belot. [REVIEW]Syman Stevens - 2016 - Mind 125 (499):909-913.
    In Geometric Possibility, Gordon Belot focuses on one particular aspect of the well-known substantivalist–relationalist debate. As the title suggests, he explo.
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation, understanding, and control.Ryan Smith - 2014 - Synthese 191 (17):4169-4200.
    There is a recent interest within both philosophy of science as well as within epistemology to provide a defensible account of understanding. In the present article I build on insights from previous work in attempt to provide an account of two related forms of understanding in terms of the ability to form rational intentions when using specific types of mental representations. I propose first that “understanding that X” requires that one form a representation of X and, further, that one must (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Are There Non-Causal Explanations (of Particular Events)?Brdford Skow - 2013 - British Journal for the Philosophy of Science (3):axs047.
    Philosophers have proposed many alleged examples of non-causal explanations of particular events. I discuss several well-known examples and argue that they fail to be non-causal. 1 Questions2 Preliminaries3 Explanations That Cite Causally Inert Entities4 Explanations That Merely Cite Laws I5 Stellar Collapse6 Explanations That Merely Cite Laws II7 A Final Example8 Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Are There Non-Causal Explanations (of Particular Events)?Bradford Skow - 2014 - British Journal for the Philosophy of Science 65 (3):445-467.
    Philosophers have proposed many alleged examples of non-causal explana- tions of particular events. I discuss several well-known examples and argue that they fail to be non-causal.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • A Case for Lorentzian Relativity.Daniel Shanahan - 2014 - Foundations of Physics 44 (4):349-367.
    The Lorentz transformation (LT) is explained by changes occurring in the wave characteristics of matter as it changes inertial frame. This explanation is akin to that favoured by Lorentz, but informed by later insights, due primarily to de Broglie, regarding the underlying unity of matter and radiation. To show the nature of these changes, a massive particle is modelled as a standing wave in three dimensions. As the particle moves, the standing wave becomes a travelling wave having two factors. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • There Is No Conspiracy of Inertia.Ryan Samaroo - 2018 - British Journal for the Philosophy of Science 69 (4):957-982.
    I examine two claims that arise in Brown’s account of inertial motion. Brown claims there is something objectionable about the way in which the motions of free particles in Newtonian theory and special relativity are coordinated. Brown also claims that since a geodesic principle can be derived in Einsteinian gravitation, the objectionable feature is explained away. I argue that there is nothing objectionable about inertia and that while the theorems that motivate Brown’s second claim can be said to figure in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The dynamical approach to spin-2 gravity.Kian Salimkhani - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:29-45.
    This paper engages with the following closely related questions that have recently received some attention in the literature: what is the status of the equivalence principle in general relativity?; how does the metric field obtain its property of being able to act as a metric?; and is the metric of GR derivative on the dynamics of the matter fields? The paper attempts to complement these debates by studying the spin-2 approach to gravity. In particular, the paper argues that three lessons (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Testing Spacetime Orientability.James Read & Marta Bielińska - 2022 - Foundations of Physics 53 (1):1-25.
    Historically, a great deal of attention has been addressed to the question of what it would take to test experimentally the metrical structure of spacetime. Arguably, however, consideration of this question has been at the expense of comparable investigations into what it would take to test other structural features of spacetime. In this article, we critique and expand substantially upon an article by Hadley (Hadley in Class Quantum Gravity, 19:4565–4571, 2002), which constitutes one of the best-known paper-length studies of what (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The limitations of inertial frame spacetime functionalism.James Read & Tushar Menon - 2021 - Synthese 199 (2):229-251.
    For Knox, ‘spacetime’ is to be defined functionally, as that which picks out a structure of local inertial frames. Assuming that Knox is motivated to construct this functional definition of spacetime on the grounds that it appears to identify that structure which plays theoperationalrole of spacetime—i.e., that structure which is actually surveyed by physical rods and clocks built from matter fields—we identify in this paper important limitations of her approach: these limitations are based upon the fact that there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Two miracles of general relativity.James Read, Harvey R. Brown & Dennis Lehmkuhl - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:14-25.
    We approach the physics of \emph{minimal coupling} in general relativity, demonstrating that in certain circumstances this leads to violations of the \emph{strong equivalence principle}, which states that, in general relativity, the dynamical laws of special relativity can be recovered at a point. We then assess the consequences of this result for the \emph{dynamical perspective on relativity}, finding that potential difficulties presented by such apparent violations of the strong equivalence principle can be overcome. Next, we draw upon our discussion of the (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Miracles persist: a reply to Sus.James Read & Niels Linnemann - 2022 - European Journal for Philosophy of Science 12 (1):1-10.
    In a recent article in this journal, Sus purports to account for what have been identified as the ‘two miracles’ of general relativity—that (1) the local symmetries of all dynamical equations for matter fields coincide, and (2) the symmetries of the dynamical equations governing matter fields coincide locally with the symmetries of the metric field—by application of the familiar result that every symmetry of the action is also a symmetry of the resulting equations of motion. In this reply, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Geometrical Constructivism and Modal Relationalism: Further Aspects of the Dynamical/Geometrical Debate.James Read - 2020 - International Studies in the Philosophy of Science 33 (1):23-41.
    I draw together some recent literature on the debate between dynamical versus geometrical approaches to spacetime theories, in order to argue that there exist defensible versions of the geometr...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Getting tense about relativity.James Read & Emily Qureshi-Hurst - 2020 - Synthese 198 (9):8103-8125.
    Special relativity has been understood by many as vindicating a tenseless conception of time, denying the existence of tensed facts and a fortiori objective temporal passage. The reason for this is straightforward: both passage and the obtaining of tensed facts require a universal knife-edge present moment—yet this structure is not easily reconcilable with the relativity of simultaneity. The above being said, the prospects for tense and passage are sometimes claimed to be improved on moving to cosmological solutions of general relativity. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Euclidean spacetime functionalism.James Read & Bryan Cheng - 2022 - Synthese 200 (6):1-22.
    We explore the significance of physical theories set in Euclidean spacetimes. In particular, we explore the use of these theories in contemporary physics at large, and the sense in which there can be a notion of temporal evolution in these theories. Having achieved these tasks, we proceed to reflect on the lessons that one can take from such theories for Knox’s ‘inertial frame’ version of spacetime functionalism, which seems to issue incorrect verdicts in the case of theories with Euclidean metrical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Space–time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:73-92.
    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Einstein׳s physical strategy, energy conservation, symmetries, and stability: “But Grossmann & I believed that the conservation laws were not satisfied”.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54 (C):52-72.
    Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Einstein׳s Equations for Spin 2 Mass 0 from Noether׳s Converse Hilbertian Assertion.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:60-69.
    An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a "curl" term with identically zero divergence. Noether proved a \emph{converse} "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom for stability, along (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Do Time-Asymmetric Laws call for Time-Asymmetric Spacetime Structure?Daniel Peterson - 2017 - Disputatio 9 (44):75-98.
    Many philosophers of physics take the failure of the laws of physics to be invariant under the time reversal transformation to give us good reason to think that spacetime is temporally anisotropic, yet the details of this inference are rarely made explicit. I discuss two reasonable ways of filling in the details of this inference, the first of which utilizes a symmetry principle proposed by John Earman and the second of which utilizes Harvey Brown’s account of spacetime. I contend that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Constructive Relativity Fails.John D. Norton - 2008 - British Journal for the Philosophy of Science 59 (4):821-834.
    Constructivists, such as Harvey Brown, urge that the geometries of Newtonian and special relativistic spacetimes result from the properties of matter. Whatever this may mean, it commits constructivists to the claim that these spacetime geometries can be inferred from the properties of matter without recourse to spatiotemporal presumptions or with few of them. I argue that the construction project only succeeds if constructivists antecedently presume the essential commitments of a realist conception of spacetime. These commitments can be avoided only by (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • How could relativity be anything other than physical.Wayne C. Myrvold - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:137-143.
    Harvey Brown’s Physical Relativity defends a view, the dynamical perspective, on the nature of spacetime that goes beyond the familiar dichotomy of substantivalist/relationist views. A full defense of this view requires attention to the way that our use of spacetime concepts connect with the physical world. Reflection on such matters, I argue, reveals that the dynamical perspective affords the only possible view about the ontological status of spacetime, in that putative rivals fail to express anything, either true or false. I (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Spacetime functionalists should be inferentialists.Tushar Menon - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Heuristic Power of Theory Classification, the Case of General Relativity.Diego Maltrana & Nicolás Sepúlveda-Quiroz - 2022 - Foundations of Physics 52 (4):1-24.
    In this article, we explore the heuristic power of the theoretical distinction between framework and interaction theories applied to the case of General Relativity. According to the distinction, theories and theoretical elements can be classified into two different groups, each with clear ontological, epistemic and functional content. Being so, to identify the group to which a theory belongs would suffice to know a priori its prospects and limitations in these areas without going into a detailed technical analysis. We make the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Einstein’s Theory of Theories and Mechanicism.Diego Maltrana, Manuel Herrera & Federico Benitez - 2022 - International Studies in the Philosophy of Science 35 (2):153-170.
    One of the most important contributions of Einstein to the philosophy of science is the distinction between two types of scientific theories: ‘principle’ and ‘constructive’ theories. More recently, Flores proposed a more general distinction, classifying scientific theories by their functional role into ‘framework’ and ‘interaction’ theories, attempting to solve some inadequacies in Einstein’s proposal. Here, based on an epistemic criterion, we present a generalised distinction which is an improvement over Flores approach. In this work (i) we evaluate the shortcomings related (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dynamic and stochastic systems as a framework for metaphysics and the philosophy of science.Christian List & Marcus Pivato - 2021 - Synthese 198 (3):2551-2612.
    Scientists often think of the world as a dynamical system, a stochastic process, or a generalization of such a system. Prominent examples of systems are the system of planets orbiting the sun or any other classical mechanical system, a hydrogen atom or any other quantum–mechanical system, and the earth’s atmosphere or any other statistical mechanical system. We introduce a general and unified framework for describing such systems and show how it can be used to examine some familiar philosophical questions, including (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the fragmentalist interpretation of special relativity.Martin A. Lipman - 2020 - Philosophical Studies 177 (1):21-37.
    Fragmentalism was first introduced by Kit Fine in his ‘Tense and Reality’. According to fragmentalism, reality is an inherently perspectival place that exhibits a fragmented structure. The current paper defends the fragmentalist interpretation of the special theory of relativity, which Fine briefly considers in his paper. The fragmentalist interpretation makes room for genuine facts regarding absolute simultaneity, duration and length. One might worry that positing such variant properties is a turn for the worse in terms of theoretical virtues because such (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the Boundary of the Cosmos.Daniel Linford - 2023 - Foundations of Physics 53 (4):1-32.
    Intuitively, the totality of physical reality—the Cosmos—has a beginning only if (i) all parts of the Cosmos agree on the direction of time (the Direction Condition) and (ii) there is a boundary to the past of all non-initial spacetime points such that there are no spacetime points to the past of the boundary (the Boundary Condition). Following a distinction previously introduced by J. Brian Pitts, the Boundary Condition can be conceived of in two distinct ways: either topologically, i.e., in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mass‐energy‐momentum: Only there because of spacetime.Dennis Lehmkuhl - 2011 - British Journal for the Philosophy of Science 62 (3):453-488.
    I describe how relativistic field theory generalizes the paradigm property of material systems, the possession of mass, to the requirement that they have a mass–energy–momentum density tensor T µ associated with them. I argue that T µ does not represent an intrinsic property of matter. For it will become evident that the definition of T µ depends on the metric field g µ in a variety of ways. Accordingly, since g µ represents the geometry of spacetime itself, the properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The information-theoretic view of quantum mechanics and the measurement problem(s).Federico Laudisa - 2023 - European Journal for Philosophy of Science 13 (2):1-26.
    Until recently Jeffrey Bub and Itamar Pitowsky, in the framework of an information-theoretic view of quantum mechanics, claimed first that to the measurement problem in its ordinary formulation there correspond in effect two measurement problems (simply called the big and the small measurement problems), with a different degree of relevance and, second, that the analysis of a quantum measurement is a problem only if other assumptions – taken by Pitowsky and Bub to be unnecessary ‘dogmas’ – are assumed. Here I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spacetime functionalism from a realist perspective.Vincent Lam & Christian Wüthrich - 2020 - Synthese 199 (Suppl 2):1-19.
    In prior work, we have argued that spacetime functionalism provides tools for clarifying the conceptual difficulties specifically linked to the emergence of spacetime in certain approaches to quantum gravity. We argue in this article that spacetime functionalism in quantum gravity is radically different from other functionalist approaches that have been suggested in quantum mechanics and general relativity: in contrast to these latter cases, it does not compete with purely interpretative alternatives, but is rather intertwined with the physical theorizing itself at (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Spacetime functionalism from a realist perspective.Vincent Lam & Christian Wüthrich - 2020 - Synthese 199 (S2):335-353.
    In prior work, we have argued that spacetime functionalism provides tools for clarifying the conceptual difficulties specifically linked to the emergence of spacetime in certain approaches to quantum gravity. We argue in this article that spacetime functionalism in quantum gravity is radically different from other functionalist approaches that have been suggested in quantum mechanics and general relativity: in contrast to these latter cases, it does not compete with purely interpretative alternatives, but is rather intertwined with the physical theorizing itself at (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Effective spacetime geometry.Eleanor Knox - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):346-356.
    I argue that the need to understand spacetime structure as emergent in quantum gravity is less radical and surprising it might appear. A clear understanding of the link between general relativity's geometrical structures and empirical geometry reveals that this empirical geometry is exactly the kind of thing that could be an effective and emergent matter. Furthermore, any theory with torsion will involve an effective geometry, even though these theories look, at first glance, like theories with straightforward spacetime geometry. As it's (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Perspectivism and Special Relativity.Mahdi Khalili - 2021 - Teorie Vědy / Theory of Science 43 (2):191-217.
    The special theory of relativity holds significant interest for scientific perspectivists. In this paper, I distinguish between two related meanings of “perspectival,” and argue that reference frames are perspectives, provided that perspectival means “being conditional” rather than “being partial.” Frame-dependent properties such as length, time duration, and simultaneity, are not partially measured in a reference frame, but their measurements are conditional on the choice of frame. I also discuss whether the constancy of the speed of light depends on perspectival factors (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Drawing the line between kinematics and dynamics in special relativity.Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):26-52.
    In his book, Physical Relativity, Harvey Brown challenges the orthodox view that special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it revealed various phenomena that were given a dynamical explanation in Lorentz's theory to be purely kinematical. I want to defend this orthodoxy. The phenomena most commonly discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena of this kind that played a role in (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations