Switch to: References

Add citations

You must login to add citations.
  1. Groupwise dense families.Heike Mildenberger - 2001 - Archive for Mathematical Logic 40 (2):93-112.
    We show that the Filter Dichotomy Principle implies that there are exactly four classes of ideals in the set of increasing functions from the natural numbers. We thus answer two open questions on consequences of ? < ?. We show that ? < ? implies that ? = ?, and that Filter Dichotomy together with ? < ? implies ? < ?. The technical means is the investigation of groupwise dense sets, ideals, filters and ultrafilters. With related techniques we prove (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lebesgue Measure Zero Modulo Ideals on the Natural Numbers.Viera Gavalová & Diego A. Mejía - forthcoming - Journal of Symbolic Logic:1-31.
    We propose a reformulation of the ideal $\mathcal {N}$ of Lebesgue measure zero sets of reals modulo an ideal J on $\omega $, which we denote by $\mathcal {N}_J$. In the same way, we reformulate the ideal $\mathcal {E}$ generated by $F_\sigma $ measure zero sets of reals modulo J, which we denote by $\mathcal {N}^*_J$. We show that these are $\sigma $ -ideals and that $\mathcal {N}_J=\mathcal {N}$ iff J has the Baire property, which in turn is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exactly two and exactly three near-coherence classes.Heike Mildenberger - 2023 - Journal of Mathematical Logic 24 (1).
    We prove that for [Formula: see text] and [Formula: see text] there is a forcing extension with exactly n near-coherence classes of non-principal ultrafilters. We introduce localized versions of Matet forcing and we develop Ramsey spaces of names. The evaluation of some of the new forcings is based on a relative of Hindman’s theorem due to Blass 1987.
    Download  
     
    Export citation  
     
    Bookmark  
  • -Ultrafilters in the Rational Perfect Set Model.Jonathan Cancino-manríquez - 2024 - Journal of Symbolic Logic 89 (1):175-194.
    We give a new characterization of the cardinal invariant $\mathfrak {d}$ as the minimal cardinality of a family $\mathcal {D}$ of tall summable ideals such that an ultrafilter is rapid if and only if it has non-empty intersection with all the ideals in the family $\mathcal {D}$. On the other hand, we prove that in the Miller model, given any family $\mathcal {D}$ of analytic tall p-ideals such that $\vert \mathcal {D}\vert <\mathfrak {d}$, there is an ultrafilter $\mathcal {U}$ which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Special ultrafilters and cofinal subsets of $$({}^omega omega, <^*)$$.Peter Nyikos - 2020 - Archive for Mathematical Logic 59 (7-8):1009-1026.
    The interplay between ultrafilters and unbounded subsets of \ with the order \ of strict eventual domination is studied. Among the tools are special kinds of non-principal ultrafilters on \. These include simple P-points; that is, ultrafilters with a base that is well-ordered with respect to the reverse of the order \ of almost inclusion. It is shown that the cofinality of such a base must be either \, the least cardinality of \-unbounded set, or \, the least cardinality of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Groupwise density and related cardinals.Andreas Blass - 1990 - Archive for Mathematical Logic 30 (1):1-11.
    We prove several theorems about the cardinal $\mathfrak{g}$ associated with groupwise density. With respect to a natural ordering of families of nond-ecreasing maps fromω toω, all families of size $< \mathfrak{g}$ are below all unbounded families. With respect to a natural ordering of filters onω, all filters generated by $< \mathfrak{g}$ sets are below all non-feeble filters. If $\mathfrak{u}< \mathfrak{g}$ then $\mathfrak{b}< \mathfrak{u}$ and $\mathfrak{g} = \mathfrak{d} = \mathfrak{c}$ . (The definitions of these cardinals are recalled in the introduction.) Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Rudin-Blass ordering of ultrafilters.Claude Laflamme & Jian-Ping Zhu - 1998 - Journal of Symbolic Logic 63 (2):584-592.
    We discuss the finite-to-one Rudin-Keisler ordering of ultrafilters on the natural numbers, which we baptize the Rudin-Blass ordering in honour of Professor Andreas Blass who worked extensively in the area. We develop and summarize many of its properties in relation to its bounding and dominating numbers, directedness, and provide applications to continuum theory. In particular, we prove in ZFC alone that there exists an ultrafilter with no Q-point below in the Rudin-Blass ordering.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the length of chains of proper subgroups covering a topological group.Taras Banakh, Dušan Repovš & Lyubomyr Zdomskyy - 2011 - Archive for Mathematical Logic 50 (3-4):411-421.
    We prove that if an ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is not coherent to a Q-point, then each analytic non-σ-bounded topological group G admits an increasing chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle G_\alpha:\alpha < \mathfrak b(\mathcal L)\rangle}$$\end{document} of its proper subgroups such that: (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{\alpha}G_\alpha=G}$$\end{document}; and (ii) For every σ-bounded subgroup H of G there exists α such that \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the cofinality of ultrapowers.Andreas Blass & Heike Mildenberger - 1999 - Journal of Symbolic Logic 64 (2):727-736.
    We prove some restrictions on the possible cofinalities of ultrapowers of the natural numbers with respect to ultrafilters on the natural numbers. The restrictions involve three cardinal characteristics of the continuum, the splitting number s, the unsplitting number r, and the groupwise density number g. We also prove some related results for reduced powers with respect to filters other than ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • There May be Infinitely Many Near-Coherence Classes under u < ∂.Heike Mildenberger - 2007 - Journal of Symbolic Logic 72 (4):1228 - 1238.
    We show that in the models of u < ∂ from [14] there are infinitely many near-coherence classes of ultrafilters, thus answering Banakh's and Blass' Question 30 of [3] negatively. By an unpublished result of Canjar, there are at least two classes in these models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Selective covering properties of product spaces.Arnold W. Miller, Boaz Tsaban & Lyubomyr Zdomskyy - 2014 - Annals of Pure and Applied Logic 165 (5):1034-1057.
    We study the preservation of selective covering properties, including classic ones introduced by Menger, Hurewicz, Rothberger, Gerlits and Nagy, and others, under products with some major families of concentrated sets of reals.Our methods include the projection method introduced by the authors in an earlier work, as well as several new methods. Some special consequences of our main results are : Every product of a concentrated space with a Hurewicz S1S1 space satisfies S1S1. On the other hand, assuming the Continuum Hypothesis, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathias forcing and combinatorial covering properties of filters.David Chodounský, Dušan Repovš & Lyubomyr Zdomskyy - 2015 - Journal of Symbolic Logic 80 (4):1398-1410.
    We give topological characterizations of filters${\cal F}$onωsuch that the Mathias forcing${M_{\cal F}}$adds no dominating reals or preserves ground model unbounded families. This allows us to answer some questions of Brendle, Guzmán, Hrušák, Martínez, Minami, and Tsaban.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Towers in filters, cardinal invariants, and luzin type families.Jörg Brendle, Barnabás Farkas & Jonathan Verner - 2018 - Journal of Symbolic Logic 83 (3):1013-1062.
    We investigate which filters onωcan contain towers, that is, a modulo finite descending sequence without any pseudointersection. We prove the following results:Many classical examples of nice tall filters contain no towers.It is consistent that tall analytic P-filters contain towers of arbitrary regular height.It is consistent that all towers generate nonmeager filters, in particular Borel filters do not contain towers.The statement “Every ultrafilter contains towers.” is independent of ZFC.Furthermore, we study many possible logical implications between the existence of towers in filters, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Near coherence and filter games.Todd Eisworth - 2001 - Archive for Mathematical Logic 40 (3):235-242.
    We investigate a two-player game involving pairs of filters on ω. Our results generalize a result of Shelah ([7] Chapter VI) dealing with applications of game theory in the study of ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Milliken-Taylor Ultrafilters.Heike Mildenberger - 2011 - Notre Dame Journal of Formal Logic 52 (4):381-394.
    We show that there may be a Milliken-Taylor ultrafilter with infinitely many near coherence classes of ultrafilters in its projection to ω, answering a question by López-Abad. We show that k -colored Milliken-Taylor ultrafilters have at least k +1 near coherence classes of ultrafilters in its projection to ω. We show that the Mathias forcing with a Milliken-Taylor ultrafilter destroys all Milliken-Taylor ultrafilters from the ground model.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sub-arithmetical ultrapowers: a survey.Thomas G. McLaughlin - 1990 - Annals of Pure and Applied Logic 49 (2):143-191.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Additivity properties of topological diagonalizations.Tomek Bartoszynski, Saharon Shelah & Boaz Tsaban - 2003 - Journal of Symbolic Logic 68 (4):1254-1260.
    We answer a question of Just, Miller, Scheepers and Szeptycki whether certain diagonalization properties for sequences of open covers are provably closed under taking finite or countable unions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations