Switch to: References

Add citations

You must login to add citations.
  1. A Bounded Jump for the Bounded Turing Degrees.Bernard Anderson & Barbara Csima - 2014 - Notre Dame Journal of Formal Logic 55 (2):245-264.
    We define the bounded jump of $A$ by $A^{b}=\{x\in \omega \mid \exists i\leq x[\varphi_{i}\downarrow \wedge\Phi_{x}^{A\upharpoonright \!\!\!\upharpoonright \varphi_{i}}\downarrow ]\}$ and let $A^{nb}$ denote the $n$th bounded jump. We demonstrate several properties of the bounded jump, including the fact that it is strictly increasing and order-preserving on the bounded Turing degrees. We show that the bounded jump is related to the Ershov hierarchy. Indeed, for $n\geq2$ we have $X\leq_{bT}\emptyset ^{nb}\iff X$ is $\omega^{n}$-c.e. $\iff X\leq_{1}\emptyset ^{nb}$, extending the classical result that $X\leq_{bT}\emptyset '\iff (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Π 1 1 relations and paths through.Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Richard A. Shore - 2004 - Journal of Symbolic Logic 69 (2):585-611.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computable categoricity of trees of finite height.Steffen Lempp, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Journal of Symbolic Logic 70 (1):151-215.
    We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a Σ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n≥ 1 in ω, there exists a computable tree of finite height which is δ0n+1-categorical but (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Bounding Prime Models.Barbara F. Csima, Denis R. Hirschfeldt, Julia F. Knight & Robert I. Soare - 2004 - Journal of Symbolic Logic 69 (4):1117 - 1142.
    A set X is prime bounding if for every complete atomic decidable (CAD) theory T there is a prime model U of T decidable in X. It is easy to see that $X = 0\prime$ is prime bounding. Denisov claimed that every $X <_{T} 0\prime$ is not prime bounding, but we discovered this to be incorrect. Here we give the correct characterization that the prime bounding sets $X \leq_{T} 0\prime$ are exactly the sets which are not $low_2$ . Recall that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The metamathematics of ergodic theory.Jeremy Avigad - 2009 - Annals of Pure and Applied Logic 157 (2-3):64-76.
    The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Barwise: Infinitary logic and admissible sets.H. Jerome Keisler & Julia F. Knight - 2004 - Bulletin of Symbolic Logic 10 (1):4-36.
    §0. Introduction. In [16], Barwise described his graduate study at Stanford. He told of his interactions with Kreisel and Scott, and said how he chose Feferman as his advisor. He began working on admissible fragments of infinitary logic after reading and giving seminar talks on two Ph.D. theses which had recently been completed: that of Lopez-Escobar, at Berkeley, on infinitary logic [46], and that of Platek [58], at Stanford, on admissible sets.Barwise's work on infinitary logic and admissible sets is described (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Degrees of Categoricity and the Hyperarithmetic Hierarchy.Barbara F. Csima, Johanna N. Y. Franklin & Richard A. Shore - 2013 - Notre Dame Journal of Formal Logic 54 (2):215-231.
    We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every computable ordinal $\alpha$, $\mathbf{0}^{}$ is the degree of categoricity of some computable structure $\mathcal{A}$. We show additionally that for $\alpha$ a computable successor ordinal, every degree $2$-c.e. in and above $\mathbf{0}^{}$ is a degree of categoricity. We further prove that every degree of categoricity is hyperarithmetic and show that the index set of structures with degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Classes of Ulm type and coding rank-homogeneous trees in other structures.E. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn & C. Safranski - 2011 - Journal of Symbolic Logic 76 (3):846 - 869.
    The first main result isolates some conditions which fail for the class of graphs and hold for the class of Abelian p-groups, the class of Abelian torsion groups, and the special class of "rank-homogeneous" trees. We consider these conditions as a possible definition of what it means for a class of structures to have "Ulm type". The result says that there can be no Turing computable embedding of a class not of Ulm type into one of Ulm type. We apply (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relative to any non-hyperarithmetic set.Noam Greenberg, Antonio Montalbán & Theodore A. Slaman - 2013 - Journal of Mathematical Logic 13 (1):1250007.
    We prove that there is a structure, indeed a linear ordering, whose degree spectrum is the set of all non-hyperarithmetic degrees. We also show that degree spectra can distinguish measure from category.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Isomorphism relations on computable structures.Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles Mccoy & Antonio Montalbán - 2012 - Journal of Symbolic Logic 77 (1):122-132.
    We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Mass problems and measure-theoretic regularity.Stephen G. Simpson - 2009 - Bulletin of Symbolic Logic 15 (4):385-409.
    A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F$_{\sigma}$ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility. We build some $\omega$-models of RCA$_0$which are relevant for the reverse mathematics of measure-theoretic regularity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Isomorphism Problem for Computable Abelian p-Groups of Bounded Length.Wesley Calvert - 2005 - Journal of Symbolic Logic 70 (1):331 - 345.
    Theories of classification distinguish classes with some good structure theorem from those for which none is possible. Some classes (dense linear orders, for instance) are non-classifiable in general, but are classifiable when we consider only countable members. This paper explores such a notion for classes of computable structures by working out a sequence of examples. We follow recent work by Goncharov and Knight in using the degree of the isomorphism problem for a class to distinguish classifiable classes from non-classifiable. In (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Minimality and completions of PA.Julia F. Knight - 2001 - Journal of Symbolic Logic 66 (3):1447-1457.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indecomposable linear orderings and hyperarithmetic analysis.Antonio Montalbán - 2006 - Journal of Mathematical Logic 6 (1):89-120.
    A statement of hyperarithmetic analysis is a sentence of second order arithmetic S such that for every Y⊆ω, the minimum ω-model containing Y of RCA0 + S is HYP, the ω-model consisting of the sets hyperarithmetic in Y. We provide an example of a mathematical theorem which is a statement of hyperarithmetic analysis. This statement, that we call INDEC, is due to Jullien [13]. To the author's knowledge, no other already published, purely mathematical statement has been found with this property (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Cone avoidance and randomness preservation.Stephen G. Simpson & Frank Stephan - 2015 - Annals of Pure and Applied Logic 166 (6):713-728.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computability of fraïssé limits.Barbara F. Csima, Valentina S. Harizanov, Russell Miller & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (1):66 - 93.
    Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Sequences of n-diagrams.Valentina S. Harizanov, Julia F. Knight & Andrei S. Morozov - 2002 - Journal of Symbolic Logic 67 (3):1227-1247.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A computable functor from graphs to fields.Russell Miller, Bjorn Poonen, Hans Schoutens & Alexandra Shlapentokh - 2018 - Journal of Symbolic Logic 83 (1):326-348.
    Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Scott sentences for equivalence structures.Sara B. Quinn - 2020 - Archive for Mathematical Logic 59 (3-4):453-460.
    For a computable structure \, if there is a computable infinitary Scott sentence, then the complexity of this sentence gives an upper bound for the complexity of the index set \\). If we can also show that \\) is m-complete at that level, then there is a correspondence between the complexity of the index set and the complexity of a Scott sentence for the structure. There are results that suggest that these complexities will always match. However, it was shown in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Detecting properties from descriptions of groups.Iva Bilanovic, Jennifer Chubb & Sam Roven - 2020 - Archive for Mathematical Logic 59 (3-4):293-312.
    We consider whether given a simple, finite description of a group in the form of an algorithm, it is possible to algorithmically determine if the corresponding group has some specified property or not. When there is such an algorithm, we say the property is recursively recognizable within some class of descriptions. When there is not, we ask how difficult it is to detect the property in an algorithmic sense. We consider descriptions of two sorts: first, recursive presentations in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scott sentences for certain groups.Julia F. Knight & Vikram Saraph - 2018 - Archive for Mathematical Logic 57 (3-4):453-472.
    We give Scott sentences for certain computable groups, and we use index set calculations as a way of checking that our Scott sentences are as simple as possible. We consider finitely generated groups and torsion-free abelian groups of finite rank. For both kinds of groups, the computable ones all have computable \ Scott sentences. Sometimes we can do better. In fact, the computable finitely generated groups that we have studied all have Scott sentences that are “computable d-\” sentence and a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comparing two versions of the reals.G. Igusa & J. F. Knight - 2016 - Journal of Symbolic Logic 81 (3):1115-1123.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Embedding jump upper semilattices into the Turing degrees.Antonio Montalbán - 2003 - Journal of Symbolic Logic 68 (3):989-1014.
    We prove that every countable jump upper semilattice can be embedded in.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Index sets and Scott sentences.J. F. Knight & C. McCoy - 2014 - Archive for Mathematical Logic 53 (5-6):519-524.
    For a computable structure A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}, there may not be a computable infinitary Scott sentence. When there is a computable infinitary Scott sentence φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document}, then the complexity of the index set I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}$$\end{document} is bounded by that of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document}. There are results giving “optimal” Scott sentences for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the decidability of the theories of the arithmetic and hyperarithmetic degrees as uppersemilattices.James S. Barnes - 2017 - Journal of Symbolic Logic 82 (4):1496-1518.
    We establish the decidability of the${{\rm{\Sigma }}_2}$theory of both the arithmetic and hyperarithmetic degrees in the language of uppersemilattices, i.e., the language with ≤, 0, and$\sqcup$. This is achieved by using Kumabe-Slaman forcing, along with other known results, to show given finite uppersemilattices${\cal M}$and${\cal N}$, where${\cal M}$is a subuppersemilattice of${\cal N}$, that every embedding of${\cal M}$into either degree structure extends to one of${\cal N}$iff${\cal N}$is an end-extension of${\cal M}$.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hanf number for Scott sentences of computable structures.S. S. Goncharov, J. F. Knight & I. Souldatos - 2018 - Archive for Mathematical Logic 57 (7-8):889-907.
    The Hanf number for a set S of sentences in \ is the least infinite cardinal \ such that for all \, if \ has models in all infinite cardinalities less than \, then it has models of all infinite cardinalities. Friedman asked what is the Hanf number for Scott sentences of computable structures. We show that the value is \. The same argument proves that \ is the Hanf number for Scott sentences of hyperarithmetical structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computably Isometric Spaces.Alexander G. Melnikov - 2013 - Journal of Symbolic Logic 78 (4):1055-1085.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Abelian p-groups and the Halting problem.Rodney Downey, Alexander G. Melnikov & Keng Meng Ng - 2016 - Annals of Pure and Applied Logic 167 (11):1123-1138.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Measuring complexities of classes of structures.Barbara F. Csima & Carolyn Knoll - 2015 - Annals of Pure and Applied Logic 166 (12):1365-1381.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Degrees of categoricity of trees and the isomorphism problem.Mohammad Assem Mahmoud - 2019 - Mathematical Logic Quarterly 65 (3):293-304.
    In this paper, we show that for any computable ordinal α, there exists a computable tree of rank with strong degree of categoricity if α is finite, and with strong degree of categoricity if α is infinite. In fact, these are the greatest possible degrees of categoricity for such trees. For a computable limit ordinal α, we show that there is a computable tree of rank α with strong degree of categoricity (which equals ). It follows from our proofs that, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Isomorphism of Computable Structures and Vaught's Conjecture.Howard Becker - 2013 - Journal of Symbolic Logic 78 (4):1328-1344.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Up to Equimorphism, Hyperarithmetic Is Recursive.Antonio Montalbán - 2005 - Journal of Symbolic Logic 70 (2):360 - 378.
    Two linear orderings are equimorphic if each can be embedded into the other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive one. On the way to our main result we prove that a linear ordering has Hausdorff rank less than $\omega _{1}^{\mathit{CK}}$ if and only if it is equimorphic to a recursive one. As a corollary of our proof we prove that, given a recursive ordinal α, the partial ordering of equimorphism types of linear orderings of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The omega-rule interpretation of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2018 - Annals of Pure and Applied Logic 169 (4):333-371.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Models and Computability.W. Dean - 2014 - Philosophia Mathematica 22 (2):143-166.
    Computationalism holds that our grasp of notions like ‘computable function’ can be used to account for our putative ability to refer to the standard model of arithmetic. Tennenbaum's Theorem has been repeatedly invoked in service of this claim. I will argue that not only do the relevant class of arguments fail, but that the result itself is most naturally understood as having the opposite of a reference-fixing effect — i.e., rather than securing the determinacy of number-theoretic reference, Tennenbaum's Theorem points (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computable trees of Scott rank ω 1CK, and computable approximation.Wesley Calvert, Julia F. Knight & Jessica Millar - 2006 - Journal of Symbolic Logic 71 (1):283-298.
    Makkai [10] produced an arithmetical structure of Scott rank ω1CK. In [9], Makkai’s example is made computable. Here we show that there are computable trees of Scott rank ω1CK. We introduce a notion of “rank homogeneity”. In rank homogeneous trees, orbits of tuples can be understood relatively easily. By using these trees, we avoid the need to pass to the more complicated “group trees” of [10] and [9]. Using the same kind of trees, we obtain one of rank ω1CK that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Spectra of Atomic Theories.Uri Andrews & Julia F. Knight - 2009 - Journal of Symbolic Logic 78 (4):1189-1198.
    Download  
     
    Export citation  
     
    Bookmark