Switch to: References

Add citations

You must login to add citations.
  1. An ordinal analysis of admissible set theory using recursion on ordinal notations.Jeremy Avigad - 2002 - Journal of Mathematical Logic 2 (1):91-112.
    The notion of a function from ℕ to ℕ defined by recursion on ordinal notations is fundamental in proof theory. Here this notion is generalized to functions on the universe of sets, using notations for well orderings longer than the class of ordinals. The generalization is used to bound the rate of growth of any function on the universe of sets that is Σ1-definable in Kripke–Platek admissible set theory with an axiom of infinity. Formalizing the argument provides an ordinal analysis.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A constructive analysis of learning in Peano Arithmetic.Federico Aschieri - 2012 - Annals of Pure and Applied Logic 163 (11):1448-1470.
    We give a constructive analysis of learning as it arises in various computational interpretations of classical Peano Arithmetic, such as Aschieri and Berardi learning based realizability, Avigad’s update procedures and epsilon substitution method. In particular, we show how to compute in Gödel’s system T upper bounds on the length of learning processes, which are themselves represented in T through learning based realizability. The result is achieved by the introduction of a new non standard model of Gödel’s T, whose new basic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Epsilon Calculus.Jeremy Avigad & Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    The epsilon calculus is a logical formalism developed by David Hilbert in the service of his program in the foundations of mathematics. The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. Specifically, in the calculus, a term εx A denotes some x satisfying A(x), if there is one. In Hilbert's Program, the epsilon terms play the role of ideal elements; the aim of Hilbert's finitistic consistency proofs is to give a procedure which removes such terms (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Gödel's reformulation of Gentzen's first consistency proof for arithmetic: The no-counterexample interpretation.W. W. Tait - 2005 - Bulletin of Symbolic Logic 11 (2):225-238.
    The last section of “Lecture at Zilsel’s” [9, §4] contains an interesting but quite condensed discussion of Gentzen’s first version of his consistency proof for P A [8], reformulating it as what has come to be called the no-counterexample interpretation. I will describe Gentzen’s result (in game-theoretic terms), fill in the details (with some corrections) of Godel's reformulation, and discuss the relation between the two proofs.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Bar recursion over finite partial functions.Paulo Oliva & Thomas Powell - 2017 - Annals of Pure and Applied Logic 168 (5):887-921.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Ackermann’s substitution method.Georg Moser - 2006 - Annals of Pure and Applied Logic 142 (1):1-18.
    We aim at a conceptually clear and technically smooth investigation of Ackermann’s substitution method [W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 162–194]. Our analysis provides a direct classification of the provably recursive functions of , i.e. Peano Arithmetic framed in the ε-calculus.
    Download  
     
    Export citation  
     
    Bookmark   6 citations