Switch to: References

Add citations

You must login to add citations.
  1. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computer verification for historians of philosophy.Landon D. C. Elkind - 2022 - Synthese 200 (3):1-28.
    Interactive theorem provers might seem particularly impractical in the history of philosophy. Journal articles in this discipline are generally not formalized. Interactive theorem provers involve a learning curve for which the payoffs might seem minimal. In this article I argue that interactive theorem provers have already demonstrated their potential as a useful tool for historians of philosophy; I do this by highlighting examples of work where this has already been done. Further, I argue that interactive theorem provers can continue to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal and Hyperintensional Cognitivism and Modal and Hyperintensional Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal and hyperintensional cognitivism and modal and hyperintensional expressivism. I argue that epistemic modal algebras, endowed with a hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics, comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are categorically dual. I examine five methods for modeling the dynamics of conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
    Structuralist foundations of mathematics aim for an ‘invariant’ conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. I argue in favor of the former over the latter. First, I explain why to choose between them we need to ask the question of what is the correct ‘categorified’ version of a set. Second, I argue in favor of groupoids over categories as ‘categorified’ sets by introducing a pre-formal understanding of groupoids as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations