Switch to: References

Add citations

You must login to add citations.
  1. Measurement and Quantum Dynamics in the Minimal Modal Interpretation of Quantum Theory.Jacob A. Barandes & David Kagan - 2020 - Foundations of Physics 50 (10):1189-1218.
    Any realist interpretation of quantum theory must grapple with the measurement problem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurement problem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the fact that you can't stop a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum monism: an assessment.Claudio Calosi - 2018 - Philosophical Studies 175 (12):3217-3236.
    Monism is roughly the view that there is only one fundamental entity. One of the most powerful argument in its favor comes from quantum mechanics. Extant discussions of quantum monism are framed independently of any interpretation of the quantum theory. In contrast, this paper argues that matters of interpretation play a crucial role when assessing the viability of monism in the quantum realm. I consider four different interpretations: modal interpretations, Bohmian mechanics, many worlds interpretations, and wavefunction realism. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Ecstatic Language of Early Daoism: A Sufi Point of View.Esmaeil Radpour - 2015 - Transcendent Philosophy Journal 16:213-230.
    Various esoteric traditions apply different modes of expression for the same metaphysical truths. We may name the two most known esoteric languages as ecstatic and scholastic. Early Daoist use of reverse symbolism as for metaphysical truths and its critical way of viewing formalist understanding of traditional teachings, common virtues and popular beliefs show that it applies an ecstatic language, which, being called shaṭḥ in Sufi terminology, has a detailed literature and technical description in Sufism. This article tries, after a short (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modal Interpretations of Quantum Mechanics.Olimpia Lombardi & Dennis Dieks - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Modal interpretations of quantum mechanics.Michael Dickson - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Non-relativistic quantum mechanics.Michael Dickson - unknown
    This essay is a discussion of the philosophical and foundational issues that arise in non-relativistic quantum theory. After introducing the formalism of the theory, I consider: characterizations of the quantum formalism, empirical content, uncertainty, the measurement problem, and non-locality. In each case, the main point is to give the reader some introductory understanding of some of the major issues and recent ideas.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum Ontology: A Modal Bundle-Theorist Relational Proposal.Matías Pasqualini - forthcoming - Foundations of Science:1-24.
    Quantum mechanics poses several challenges in ontological elucidation. Contextuality threatens determinism and favors realism about possibilia. Indistinguishability challenges traditional identity criteria associated with individual objects. Entanglement favors holistic and relational approaches. These issues, in close connection with different interpretations of quantum mechanics, have given rise to various proposals for the ontology of quantum mechanics. There is a proposal that is realistic about possibilia, where quantum systems are seen as bundles of possible intrinsic properties. This proposal is developed in close connection (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Prime Matter and the Quantum Wavefunction.Robert C. Koons - 2024 - Ancient Philosophy Today 6 (1):92-119.
    Prime matter plays an indispensable role in Aristotle’s philosophy, enabling him to avoid the pitfalls of both naïve Platonism and nominalism. Prime matter is best thought of as a kind of infinitely divisible and atomless bare particularity, grounding the distinctness of distinct members of the same species. Such bare particularity is needed in symmetrical situations, like a world consisting of indistinguishable Max Black spheres. Bare particularity is especially important in modern physics, given the homogeneity and isotropy of space. With the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Dynamics for Positive Operator Measures.Jay Gambetta & H. M. Wiseman - 2004 - Foundations of Physics 34 (3):419-448.
    The modal interpretation of quantum mechanics allows one to keep the standard classical definition of realism intact. That is, variables have a definite status for all time and a measurement only tells us which value it had. However, at present modal dynamics are only applicable to situations that are described in the orthodox theory by projective measures. In this paper we extend modal dynamics to include positive operator measures. That is, for example, rather than using a complete set of orthogonal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Real World Interpretations of Quantum Theory.Adrian Kent - 2012 - Foundations of Physics 42 (3):421-435.
    I propose a new class of interpretations, real world interpretations, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They give a mathematical characterisation of the different possible worlds arising in an evolving closed quantum system, in which each possible world corresponds to a (generally mixed) evolving quantum state. In a realistic model, the states corresponding to different worlds should be expected to tend towards orthogonality as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2003 - Philosophy of Science 70 (2):330-358.
    We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994). This paper presents the two approaches (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Interpretations of Quantum Theory in the Light of Modern Cosmology.Mario Castagnino, Sebastian Fortin, Roberto Laura & Daniel Sudarsky - 2017 - Foundations of Physics 47 (11):1387-1422.
    The difficult issues related to the interpretation of quantum mechanics and, in particular, the “measurement problem” are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott’s problem.
    Download  
     
    Export citation  
     
    Bookmark  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Scientific Pluralism.Stephen H. Kellert, Helen E. Longino & C. Kenneth Waters (eds.) - 1956 - Univ of Minnesota Press.
    Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science?
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Chance and time.Amit Hagar - 2004 - Dissertation, Ubc
    One of the recurrent problems in the foundations of physics is to explain why we rarely observe certain phenomena that are allowed by our theories and laws. In thermodynamics, for example, the spontaneous approach towards equilibrium is ubiquitous yet the time-reversal-invariant laws that presumably govern thermal behaviour in the microscopic level equally allow spontaneous departure from equilibrium to occur. Why are the former processes frequently observed while the latter are almost never reported? Another example comes from quantum mechanics where the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Hamiltonians and stochastic jumps.Sheldon Goldstein - manuscript
    With many Hamiltonians one can naturally associate a |Ψ|2-distributed Markov process. For nonrelativistic quantum mechanics, this process is in fact deterministic, and is known as Bohmian mechanics. For the Hamiltonian of a quantum field theory, it is typically a jump process on the configuration space of a variable number of particles. We define these processes for regularized quantum field theories, thereby generalizing previous work of John S. Bell [3] and of ourselves [11]. We introduce a formula expressing the jump rates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal Interpretations of Quantum Mechanics and Relativity: A Reconsideration. [REVIEW]Joseph Berkovitz & Meir Hemmo - 2004 - Foundations of Physics 35 (3):373-397.
    Two of the main interpretative problems in quantum mechanics are the so-called measurement problem and the question of the compatibility of quantum mechanics with relativity theory. Modal interpretations of quantum mechanics were designed to solve both of these problems. They are no-collapse (typically) indeterministic interpretations of quantum mechanics that supplement the orthodox state description of physical systems by a set of possessed properties that is supposed to be rich enough to account for the classical-like behavior of macroscopic systems, but sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-Orthogonal Core Projectors for Modal Interpretations of Quantum Mechanics.R. W. Spekkens & J. E. Sipe - 2001 - Foundations of Physics 31 (10):1403-1430.
    Modal interpretations constitute a particular approach to associating dynamical variables with physical systems in quantum mechanics. Given the “quantum logical” constraints that are typically adopted by such interpretations, only certain sets of variables can be taken to be simultaneously definite-valued, and only certain sets of values can be ascribed to these variables at a given time. Moreover, each allowable set of variables and values can be uniquely specified by a single “core” projector in the Hilbert space associated with the system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The problem of optical isomerism and the interpretation of quantum mechanics.Juan Camilo Martínez González - 2019 - Foundations of Chemistry 21 (1):97-107.
    When young Kant meditated upon the distinction between his right and left hands, he could not foresee that the problem of incongruent counterparts would revive in the twentieth century under a new form. In the early days of quantum chemistry, Friedrich Hund developed the so-called Hund paradox that arises from the supposed inability of quantum mechanics to account for the difference between enantiomers. In this paper, the paradox is expressed as a case of quantum measurement, stressing that decoherence does not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Spin and Contextuality in Extended de Broglie-Bohm-Bell Quantum Mechanics.Jeroen C. Vink - 2022 - Foundations of Physics 52 (5):1-27.
    This paper introduces an extension of the de Broglie-Bohm-Bell formulation of quantum mechanics, which includes intrinsic particle degrees of freedom, such as spin, as elements of reality. To evade constraints from the Kochen-Specker theorem the discrete spin values refer to a specific basis – i.e., a single spin vector orientation for each particle; these spin orientations are, however, not predetermined, but dynamic and guided by the wave function of the system, which is conditional on the realized location values of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the possibility of submergence.Claudio Calosi - 2017 - Analysis 77 (3):501-511.
    Are submergence and submergent properties metaphysically possible? This is a substantive question that has been either utterly neglected or quickly answered in the negative. This neglect is not only significant in itself; the possibility of submergence plays a crucial role in hotly debated topics in metaphysics, for example, the debate over Monism and Pluralism. This paper is intended to prompt a discussion about metaphysical submergence. In particular I will provide examples of submergent properties, argue that these are metaphysically possible and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diese Verdammte Quantenspringerei.Anthony Sudbery - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):387-411.
    It is argued that the conventional formulation of quantum mechanics is inadequate: the usual interpretation of the mathematical formalism in terms of the results of measurements cannot be applied to situations in which discontinuous transitions (''quantum jumps'') are observed as they happen, since nothing that can be called a measurement happens at the moment of observation. Attempts to force such observations into the standard mould lead to absurd results: ''a watched pot never boils''. Experiments show both that this result is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bell-type quantum field theories.Sheldon Goldstein - manuscript
    In [3] John S. Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a |Ψ|2-distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; such processes we call Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A Modal Interpretation of Quantum Mechanics Based on a Principle of Entropy Minimization.R. W. Spekkens & J. E. Sipe - 2001 - Foundations of Physics 31 (10):1431-1464.
    Within many approaches to the interpretation of quantum mechanics, especially modal interpretations, one singles out a particular decomposition of the state vector in order to fix the properties that are well-defined for the system. We present a novel proposal for this preferred decomposition. Given a distinguished factorization of the Hilbert space, it is the decomposition that minimizes the Ingarden–Urbanik entropy from among all product decompositions with respect to the distinguished factorization. We incorporate this choice of preferred decomposition into a framework (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Single-World Theory of the Extended Wigner’s Friend Experiment.Anthony Sudbery - 2017 - Foundations of Physics 47 (5):658-669.
    Frauchiger and Renner have recently claimed to prove that “Single-world interpretations of quantum theory cannot be self-consistent”. This is contradicted by a construction due to Bell, inspired by Bohmian mechanics, which shows that any quantum system can be modelled in such a way that there is only one “world” at any time, but the predictions of quantum theory are reproduced. This Bell–Bohmian theory is applied to the experiment proposed by Frauchiger and Renner, and their argument is critically examined. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A new application of the modal-Hamiltonian interpretation of quantum mechanics: The problem of optical isomerism.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:123-135.
    The modal-Hamiltonian interpretation belongs to the modal family of interpretations of quantum mechanics. By endowing the Hamiltonian with the role of selecting the subset of the definite-valued observables of the system, it accounts for ideal and non-ideal measurements, and also supplies a criterion to distinguish between reliable and non-reliable measurements in the non-ideal case. It can be reformulated in an explicitly invariant form, in terms of the Casimir operators of the Galilean group, and the compatibility of the MHI with the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations