Switch to: References

Citations of:

Experimental Mathematics

Erkenntnis 68 (3):331-344 (2008)

Add citations

You must login to add citations.
  1. Cosmic Skepticism and the Beginning of Physical Reality (Doctoral Dissertation).Linford Dan - 2022 - Dissertation, Purdue University
    This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Knowledge of Mathematics without Proof.Alexander Paseau - 2015 - British Journal for the Philosophy of Science 66 (4):775-799.
    Mathematicians do not claim to know a proposition unless they think they possess a proof of it. For all their confidence in the truth of a proposition with weighty non-deductive support, they maintain that, strictly speaking, the proposition remains unknown until such time as someone has proved it. This article challenges this conception of knowledge, which is quasi-universal within mathematics. We present four arguments to the effect that non-deductive evidence can yield knowledge of a mathematical proposition. We also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘On the Different Ways of ‘‘Doing Theory’’ in Biology‘.Massimo Pigliucci - 2013 - Biological Theory 7 (4): 287-297.
    ‘‘Theoretical biology’’ is a surprisingly heter- ogeneous field, partly because it encompasses ‘‘doing the- ory’’ across disciplines as diverse as molecular biology, systematics, ecology, and evolutionary biology. Moreover, it is done in a stunning variety of different ways, using anything from formal analytical models to computer sim- ulations, from graphic representations to verbal arguments. In this essay I survey a number of aspects of what it means to do theoretical biology, and how they compare with the allegedly much more restricted (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Experimental mathematics, computers and the a priori.Mark McEvoy - 2013 - Synthese 190 (3):397-412.
    In recent decades, experimental mathematics has emerged as a new branch of mathematics. This new branch is defined less by its subject matter, and more by its use of computer assisted reasoning. Experimental mathematics uses a variety of computer assisted approaches to verify or prove mathematical hypotheses. For example, there is “number crunching” such as searching for very large Mersenne primes, and showing that the Goldbach conjecture holds for all even numbers less than 2 × 1018. There are “verifications” of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The ordinary and the experimental: Cook Wilson and Austin on method in philosophy.Guy Longworth - 2018 - British Journal for the History of Philosophy 26 (5):939-960.
    To what extent was ordinary language philosophy a precursor to experimental philosophy? Since the conditions on pursuit of either project are at best unclear, and at worst protean, the general question is hard to address. I focus instead on particular cases, seeking to uncover some central aspects of J. L. Austin’s and John Cook Wilson’s ordinary language based approach to philosophical method. I make a start at addressing three questions. First, what distinguishes their approach from other more traditional approaches? Second, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • John Cook Wilson.Mathieu Marion - 2010 - Stanford Encyclopedia of Philosophy.
    John Cook Wilson (1849–1915) was Wykeham Professor of Logic at New College, Oxford and the founder of ‘Oxford Realism’, a philosophical movement that flourished at Oxford during the first decades of the 20th century. Although trained as a classicist and a mathematician, his most important contribution was to the theory of knowledge, where he argued that knowledge is factive and not definable in terms of belief, and he criticized ‘hybrid’ and ‘externalist’ accounts. He also argued for direct realism in perception, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Challenges Facing Counterfactual Accounts of Explanation in Mathematics.Marc Lange - 2022 - Philosophia Mathematica 30 (1):32-58.
    Some mathematical proofs explain why the theorems they prove hold. This paper identifies several challenges for any counterfactual account of explanation in mathematics (that is, any account according to which an explanatory proof reveals how the explanandum would have been different, had facts in the explanans been different). The paper presumes that countermathematicals can be nontrivial. It argues that nevertheless, a counterfactual account portrays explanatory power as too easy to achieve, does not capture explanatory asymmetry, and fails to specify why (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Theory of Quantum Computation and Philosophy of Mathematics. Part II.Krzysztof Wójtowicz - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Argument of Mathematics.Andrew Aberdein & Ian J. Dove (eds.) - 2013 - Dordrecht, Netherland: Springer.
    Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. -/- The book begins by first challenging the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proofs, Reliable Processes, and Justification in Mathematics.Yacin Hamami - 2021 - British Journal for the Philosophy of Science 74 (4):1027-1045.
    Although there exist today a variety of non-deductive reliable processes able to determine the truth of certain mathematical propositions, proof remains the only form of justification accepted in mathematical practice. Some philosophers and mathematicians have contested this commonly accepted epistemic superiority of proof on the ground that mathematicians are fallible: when the deductive method is carried out by a fallible agent, then it comes with its own level of reliability, and so might happen to be equally or even less reliable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-deductive logic in mathematics.James Franklin - 1987 - British Journal for the Philosophy of Science 38 (1):1-18.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as Fermat's Last Theorem and the Riemann Hypothesis, have had to be considered in terms of the evidence for and against them. It is argued here that it is not adequate to describe the relation of evidence to hypothesis as `subjective', `heuristic' or (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences.P.-A. Braillard and C. Malaterre (ed.) - 2015 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-deductive methods in mathematics.Alan Baker - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations