Switch to: References

Citations of:

How to count structure

Noûs 56 (2):295-322 (2022)

Add citations

You must login to add citations.
  1. Are Maxwell Gravitation and Newton-Cartan Theory Theoretically Equivalent?Eleanor March - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reversing the arrow of time.Bryan W. Roberts - 2022 - Cambridge: Cambridge University Press.
    'The arrow of time' refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world, how to understand the relationship between symmetries and what is real, and how to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Between a Stone and a Hausdorff Space.Jingyi Wu & James Weatherall - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding Gauge.James Owen Weatherall - 2016 - Philosophy of Science 83 (5):1039-1049.
    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • On Einstein Algebras and Relativistic Spacetimes.Sarita Rosenstock, Thomas William Barrett & James Owen Weatherall - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):309-316.
    In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson and Weatherall, the two are equivalent theories.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • What are empirical consequences? On dispensability and composite objects.Alex LeBrun - 2021 - Synthese 199 (5-6):13201-13223.
    Philosophers sometimes give arguments that presuppose the following principle: two theories can fail to be empirically equivalent on the sole basis that they present different “thick” metaphysical pictures of the world. Recently, a version of this principle has been invoked to respond to the argument that composite objects are dispensable to our best scientific theories. This response claims that our empirical evidence distinguishes between ordinary and composite-free theories, and it empirically favors the ordinary ones. In this paper, I ask whether (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Nature of a Constant of Nature: the Case of G.Caspar Jacobs - 2022 - Philosophy of Science 90 (4):797-81.
    Physics presents us with a symphony of natural constants: G, h, c, etc. Up to this point, constants have received comparatively little philosophical attention. In this paper I provide an account of dimensionful constants, in particular the gravitational constant. I propose that they represent inter-quantity structure in the form of relations between quantities with different dimensions. I use this account of G to settle a debate over whether mass scalings are symmetries of Newtonian Gravitation. I argue that they are not, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Mutual translatability, equivalence, and the structure of theories.Thomas William Barrett & Hans Halvorson - 2022 - Synthese 200 (3):1-36.
    This paper presents a simple pair of first-order theories that are not definitionally (nor Morita) equivalent, yet are mutually conservatively translatable and mutually 'surjectively' translatable. We use these results to clarify the overall geography of standards of equivalence and to show that the structural commitments that theories make behave in a more subtle manner than has been recognized.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On automorphism criteria for comparing amounts of mathematical structure.Thomas William Barrett, J. B. Manchak & James Owen Weatherall - 2023 - Synthese 201 (6):1-14.
    Wilhelm (Forthcom Synth 199:6357–6369, 2021) has recently defended a criterion for comparing structure of mathematical objects, which he calls Subgroup. He argues that Subgroup is better than SYM \(^*\), another widely adopted criterion. We argue that this is mistaken; Subgroup is strictly worse than SYM \(^*\). We then formulate a new criterion that improves on both SYM \(^*\) and Subgroup, answering Wilhelm’s criticisms of SYM \(^*\) along the way. We conclude by arguing that no criterion that looks only to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The gauge argument: A Noether Reason.Henrique Gomes, Bryan W. Roberts & Jeremy Butterfield - 2022 - In James Read & Nicholas J. Teh (eds.), The physics and philosophy of Noether's theorems. Cambridge: Cambridge University Press. pp. 354-377.
    Why is gauge symmetry so important in modern physics, given that one must eliminate it when interpreting what the theory represents? In this paper we discuss the sense in which gauge symmetry can be fruitfully applied to constrain the space of possible dynamical models in such a way that forces and charges are appropriately coupled. We review the most well-known application of this kind, known as the 'gauge argument' or 'gauge principle', discuss its difficulties, and then reconstruct the gauge argument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categories and the Foundations of Classical Field Theories.James Owen Weatherall - forthcoming - In Elaine Landry (ed.), Categories for the Working Philosopher. Oxford, UK: Oxford University Press.
    I review some recent work on applications of category theory to questions concerning theoretical structure and theoretical equivalence of classical field theories, including Newtonian gravitation, general relativity, and Yang-Mills theories.
    Download  
     
    Export citation  
     
    Bookmark   28 citations