Switch to: References

Citations of:

Categories and the Foundations of Classical Field Theories

In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press (2017)

Add citations

You must login to add citations.
  1. Goals shape means: a pluralist response to the problem of formal representation in ontic structural realism.Agnieszka M. Proszewska - 2022 - Synthese 200 (3):1-21.
    The aim of the paper is to assess the relative merits of two formal representations of structure, namely, set theory and category theory. The purpose is to articulate ontic structural realism. In turn, this will facilitate a discussion on the strengths and weaknesses of both concepts and will lead to a proposal for a pragmatics-based approach to the question of the choice of an appropriate framework. First, we present a case study from contemporary science—a comparison of the formulation of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Cost of Closure: Logical Realism, Anti-Exceptionalism, and Theoretical Equivalence.Michaela M. McSweeney - 2021 - Synthese 199:12795–12817.
    Philosophers of science often assume that logically equivalent theories are theoretically equivalent. I argue that two theses, anti-exceptionalism about logic (which says, roughly, that logic is not a priori, that it is revisable, and that it is not special or set apart from other human inquiry) and logical realism (which says, roughly, that differences in logic reflect genuine metaphysical differences in the world), make trouble for both this commitment and the closely related commitment to theories being closed under logical consequence. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the classical limit “singular”?Jer Steeger & Benjamin H. Feintzeig - 2021 - Studies in History and Philosophy of Science Part A 88 (C):263-279.
    We argue against claims that the classical ℏ → 0 limit is “singular” in a way that frustrates an eliminative reduction of classical to quantum physics. We show one precise sense in which quantum mechanics and scaling behavior can be used to recover classical mechanics exactly, without making prior reference to the classical theory. To do so, we use the tools of strict deformation quantization, which provides a rigorous way to capture the ℏ → 0 limit. We then use the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mutual translatability, equivalence, and the structure of theories.Thomas William Barrett & Hans Halvorson - 2022 - Synthese 200 (3):1-36.
    This paper presents a simple pair of first-order theories that are not definitionally (nor Morita) equivalent, yet are mutually conservatively translatable and mutually 'surjectively' translatable. We use these results to clarify the overall geography of standards of equivalence and to show that the structural commitments that theories make behave in a more subtle manner than has been recognized.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Duality and ontology.Baptiste Le Bihan & James Read - 2018 - Philosophy Compass 13 (12):e12555.
    A ‘duality’ is a formal mapping between the spaces of solutions of two empirically equivalent theories. In recent times, dualities have been found to be pervasive in string theory and quantum field theory. Naïvely interpreted, duality-related theories appear to make very different ontological claims about the world—differing in e.g. space-time structure, fundamental ontology, and mereological structure. In light of this, duality-related theories raise questions familiar from discussions of underdetermination in the philosophy of science: in the presence of dual theories, what (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Classical Spacetime Structure.James Owen Weatherall - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss several issues related to "classical" spacetime structure. I review Galilean, Newtonian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Do Symmetries Tell Us About Structure?Thomas William Barrett - 2017 - Philosophy of Science (4):617-639.
    Mathematicians, physicists, and philosophers of physics often look to the symmetries of an object for insight into the structure and constitution of the object. My aim in this paper is to explain why this practice is successful. In order to do so, I present a collection of results that are closely related to (and in a sense, generalizations of) Beth’s and Svenonius’ theorems.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Equivalent and Inequivalent Formulations of Classical Mechanics.Thomas William Barrett - 2019 - British Journal for the Philosophy of Science 70 (4):1167-1199.
    In this article, I examine whether or not the Hamiltonian and Lagrangian formulations of classical mechanics are equivalent theories. I do so by applying a standard for equivalence that was recently introduced into philosophy of science by Halvorson and Weatherall. This case study yields three general philosophical payoffs. The first concerns what a theory is, while the second and third concern how we should interpret what our physical theories say about the world. 1Introduction 2When Are Two Theories Equivalent? 3Preliminaries on (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Quine’s conjecture on many-sorted logic.Thomas William Barrett & Hans Halvorson - 2017 - Synthese 194 (9):3563-3582.
    Quine often argued for a simple, untyped system of logic rather than the typed systems that were championed by Russell and Carnap, among others. He claimed that nothing important would be lost by eliminating sorts, and the result would be additional simplicity and elegance. In support of this claim, Quine conjectured that every many-sorted theory is equivalent to a single-sorted theory. We make this conjecture precise, and prove that it is true, at least according to one reasonable notion of theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Categories of scientific theories.Hans Halvorson & Dimitris Tsementzis - 2017 - In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press.
    We discuss ways in which category theory might be useful in philosophy of science, in particular for articulating the structure of scientific theories. We argue, moreover, that a categorical approach transcends the syntax-semantics dichotomy in 20th century analytic philosophy of science.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On Einstein Algebras and Relativistic Spacetimes.Sarita Rosenstock, Thomas William Barrett & James Owen Weatherall - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):309-316.
    In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson and Weatherall, the two are equivalent theories.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Categorical Equivalence and the Kinematics-Dynamics Distinction.Eleanor March - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  • Are Maxwell Gravitation and Newton-Cartan Theory Theoretically Equivalent?Eleanor March - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theoretical equivalence and duality.Sebastian De Haro - 2019 - Synthese 198 (6):5139-5177.
    Theoretical equivalence and duality are two closely related notions: but their interconnection has so far not been well understood. In this paper I explicate the contribution of a recent schema for duality to discussions of theoretical equivalence. I argue that duality suggests a construal of theoretical equivalence in the physical sciences. The construal is in terms of the isomorphism of models, as defined by the schema. This construal gives interpretative constraints that should be useful for discussions of theoretical equivalence more (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Deduction and definability in infinite statistical systems.Benjamin H. Feintzeig - 2017 - Synthese 196 (5):1-31.
    Classical accounts of intertheoretic reduction involve two pieces: first, the new terms of the higher-level theory must be definable from the terms of the lower-level theory, and second, the claims of the higher-level theory must be deducible from the lower-level theory along with these definitions. The status of each of these pieces becomes controversial when the alleged reduction involves an infinite limit, as in statistical mechanics. Can one define features of or deduce the behavior of an infinite idealized system from (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What can categories tell us about space-time?Ko Sanders - unknown
    It is widely believed that in quantum theories of gravity, the classical description of space-time as a manifold is no longer viable as a fundamental concept. Instead, space-time emerges as an approximation in appropriate regimes. In order to understand what is required to explain this emergence, it is necessary to have a good understanding of the classical structure of space-time. In this essay I will focus on the concept of space-time as it appears in locally covariant quantum field theory, an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Schema for Duality, Illustrated by Bosonization.Sebastian De Haro & Jeremy Butterfield - unknown
    In this paper we present a schema for describing dualities between physical theories, and illustrate it in detail with the example of bosonization: a boson-fermion duality in two-dimensional quantum field theory. The schema develops proposals in De Haro : these proposals include construals of notions related to duality, like representation, model, symmetry and interpretation. The aim of the schema is to give a more precise criterion for duality than has so far been considered. The bosonization example, or boson-fermion duality, has (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Spacetime and Physical Equivalence.Sebastian De Haro - unknown
    In this essay I begin to lay out a conceptual scheme for: analysing dualities as cases of theoretical equivalence; assessing when cases of theoretical equivalence are also cases of physical equivalence. The scheme is applied to gauge/gravity dualities. I expound what I argue to be their contribution to questions about: the nature of spacetime in quantum gravity; broader philosophical and physical discussions of spacetime. - proceed by analysing duality through four contrasts. A duality will be a suitable isomorphism between models: (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • On the time reversal invariance of classical electromagnetic theory.David B. Malament - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):295-315.
    David Albert claims that classical electromagnetic theory is not time reversal invariant. He acknowledges that all physics books say that it is, but claims they are ``simply wrong" because they rely on an incorrect account of how the time reversal operator acts on magnetic fields. On that account, electric fields are left intact by the operator, but magnetic fields are inverted. Albert sees no reason for the asymmetric treatment, and insists that neither field should be inverted. I argue, to the (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Learning from the Shape of Data.Sarita Rosenstock - 2021 - Philosophy of Science 88 (5):1033-1044.
    To make sense of large data sets, we often look for patterns in how data points are “shaped” in the space of possible measurement outcomes. The emerging field of topological data analysis offers a toolkit for formalizing the process of identifying such shapes. This article aims to discover why and how the resulting analysis should be understood as reflecting significant features of the systems that generated the data. I argue that a particular feature of TDA—its functoriality—is what enables TDA to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Motivating dualities.James Read & Thomas Møller-Nielsen - 2020 - Synthese 197 (1):263-291.
    There exists a common view that for theories related by a ‘duality’, dual models typically may be taken ab initio to represent the same physical state of affairs, i.e. to correspond to the same possible world. We question this view, by drawing a parallel with the distinction between ‘interpretational’ and ‘motivational’ approaches to symmetries.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The Non-equivalence of Einstein and Lorentz.Clara Bradley - 2021 - British Journal for the Philosophy of Science 72 (4):1039-1059.
    In this article, I give a counterexample to a claim made in that empirically equivalent theories can often be regarded as theoretically equivalent by treating one as having surplus structure, thereby overcoming the problem of underdetermination of theory choice. The case I present is that of Lorentz's ether theory and Einstein's theory of special relativity. I argue that Norton's suggestion that surplus structure is present in Lorentz's theory in the form of the ether state of rest is based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Definable categorical equivalence.Laurenz Hudetz - 2019 - Philosophy of Science 86 (1):47-75.
    This article proposes to explicate theoretical equivalence by supplementing formal equivalence criteria with preservation conditions concerning interpretation. I argue that both the internal structure of models and choices of morphisms are aspects of formalisms that are relevant when it comes to their interpretation. Hence, a formal criterion suitable for being supplemented with preservation conditions concerning interpretation should take these two aspects into account. The two currently most important criteria—gener-alized definitional equivalence (Morita equivalence) and categorical equivalence—are not optimal in this respect. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Part 2: Theoretical equivalence in physics.James Owen Weatherall - 2019 - Philosophy Compass 14 (5):e12591.
    I review the philosophical literature on the question of when two physical theories are equivalent. This includes a discussion of empirical equivalence, which is often taken to be necessary, and sometimes taken to be sufficient, for theoretical equivalence; and “interpretational” equivalence, which is the idea that two theories are equivalent just in case they have the same interpretation. It also includes a discussion of several formal notions of equivalence that have been considered in the recent philosophical literature, including (generalized) definitional (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Representational Redundancy, Surplus Structure, and the Hole Argument.Clara Bradley & James Owen Weatherall - 2020 - Foundations of Physics 50 (4):270-293.
    We address a recent proposal concerning ‘surplus structure’ due to Nguyen et al.. We argue that the sense of ‘surplus structure’ captured by their formal criterion is importantly different from—and in a sense, opposite to—another sense of ‘surplus structure’ used by philosophers. We argue that minimizing structure in one sense is generally incompatible with minimizing structure in the other sense. We then show how these distinctions bear on Nguyen et al.’s arguments about Yang-Mills theory and on the hole argument.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Does Newtonian Space Provide Identity to Quantum Systems?Décio Krause - 2019 - Foundations of Science 24 (2):197-215.
    Physics is not just mathematics. This seems trivial, but poses difficult and interesting questions. In this paper we analyse a particular discrepancy between non-relativistic quantum mechanics and ‘classical’ space and time. We also suggest, but not discuss, the case of the relativistic QM. In this work, we are more concerned with the notion of space and its mathematical representation. The mathematics entails that any two spatially separated objects are necessarily different, which implies that they are discernible —we say that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Status of Scaling Limits as Approximations in Quantum Theories.Benjamin Feintzeig - unknown
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools (...)
    Download  
     
    Export citation  
     
    Bookmark